AIMC Topic: Lung

Clear Filters Showing 91 to 100 of 982 articles

Application of NotebookLM, a large language model with retrieval-augmented generation, for lung cancer staging.

Japanese journal of radiology
PURPOSE: In radiology, large language models (LLMs), including ChatGPT, have recently gained attention, and their utility is being rapidly evaluated. However, concerns have emerged regarding their reliability in clinical applications due to limitatio...

Pulmonary Xe MRI: CNN Registration and Segmentation to Generate Ventilation Defect Percent with Multi-center Validation.

Academic radiology
RATIONALE AND OBJECTIVES: Hyperpolarized Xe MRI quantifies ventilation-defect-percent (VDP), the ratio of Xe signal-void to the anatomic H MRI thoracic-cavity-volume. VDP is associated with airway inflammation and disease control and serves as a trea...

CT ventilation images produced by a 3D neural network show improvement over the Jacobian and HU DIR-based methods to predict quantized lung function.

Medical physics
BACKGROUND: Radiation-induced pneumonitis affects up to 33% of non-small cell lung cancer (NSCLC) patients, with fatal pneumonitis occurring in 2% of patients. Pneumonitis risk is related to the dose and volume of lung irradiated. Clinical radiothera...

Attention-based multi-residual network for lung segmentation in diseased lungs with custom data augmentation.

Scientific reports
Lung disease analysis in chest X-rays (CXR) using deep learning presents significant challenges due to the wide variation in lung appearance caused by disease progression and differing X-ray settings. While deep learning models have shown remarkable ...

A Physics-Informed Deep Neural Network for Harmonization of CT Images.

IEEE transactions on bio-medical engineering
OBJECTIVE: Computed Tomography (CT) quantification is affected by the variability in image acquisition and rendition. This paper aimed to reduce this variability by harmonizing the images utilizing physics-based deep neural networks (DNNs).

A systematic review on feature extraction methods and deep learning models for detection of cancerous lung nodules at an early stage -the recent trends and challenges.

Biomedical physics & engineering express
Lung cancer is one of the most common life-threatening worldwide cancers affecting both the male and the female populations. The appearance of nodules in the scan image is an early indication of the development of cancer cells in the lung. The Low Do...

Identification and validation of biomarkers related to mitochondria during ex vivo lung perfusion for lung transplants based on machine learning algorithm.

Gene
BACKGROUND: Ex vivo lung perfusion (EVLP) is a critical strategy to rehabilitate marginal donor lungs, thereby increasing lung transplantation (LTx) rates. Ischemia-reperfusion (I/R) injury inevitably occurs during LTx. Exploring the common mechanism...

BreathVisionNet: A pulmonary-function-guided CNN-transformer hybrid model for expiratory CT image synthesis.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, du...

Enhancing multiclass COVID-19 prediction with ESN-MDFS: Extreme smart network using mean dropout feature selection technique.

PloS one
Deep learning and artificial intelligence offer promising tools for improving the accuracy and efficiency of diagnosing various lung conditions using portable chest x-rays (CXRs). This study explores this potential by leveraging a large dataset conta...