AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lung

Showing 111 to 120 of 934 articles

Clear Filters

Shape prior-constrained deep learning network for medical image segmentation.

Computers in biology and medicine
We propose a shape prior representation-constrained multi-scale features fusion segmentation network for medical image segmentation, including training and testing stages. The novelty of our training framework lies in two modules comprised of the sha...

Machine learning for accurate detection of small airway dysfunction-related respiratory changes: an observational study.

Respiratory research
BACKGROUND: The use of machine learning(ML) methods would improve the diagnosis of small airway dysfunction(SAD) in subjects with chronic respiratory symptoms and preserved pulmonary function(PPF). This paper evaluated the performance of several ML a...

Model based on the automated AI-driven CT quantification is effective for the diagnosis of refractory Mycoplasma pneumoniae pneumonia.

Scientific reports
The prediction of refractory Mycoplasma pneumoniae pneumonia (RMPP) remains a clinically significant challenge. This study aimed to develop an early predictive model utilizing artificial intelligence (AI)-derived quantitative assessment of lung lesio...

Applications of artificial intelligence in computed tomography imaging for phenotyping pulmonary hypertension.

Current opinion in pulmonary medicine
PURPOSE OF REVIEW: Pulmonary hypertension is a heterogeneous condition with significant morbidity and mortality. Computer tomography (CT) plays a central role in determining the phenotype of pulmonary hypertension, informing treatment strategies. Man...

Probing perfection: The relentless art of meddling for pulmonary airway segmentation from HRCT via a human-AI collaboration based active learning method.

Artificial intelligence in medicine
In the realm of pulmonary tracheal segmentation, the scarcity of annotated data stands as a prevalent pain point in most medical segmentation endeavors. Concurrently, most Deep Learning (DL) methodologies employed in this domain invariably grapple wi...

A deep learning-based model to estimate pulmonary function from chest x-rays: multi-institutional model development and validation study in Japan.

The Lancet. Digital health
BACKGROUND: Chest x-ray is a basic, cost-effective, and widely available imaging method that is used for static assessments of organic diseases and anatomical abnormalities, but its ability to estimate dynamic measurements such as pulmonary function ...

Comparison of lung ultrasound assisted by artificial intelligence to radiology examination in pneumothorax.

Journal of clinical ultrasound : JCU
BACKGROUND: Lung ultrasound can evaluate for pneumothorax but the accuracy of diagnosis depends on experience among physicians. This study aimed to investigate the sensitivity and specificity of intelligent lung ultrasound in comparison with chest x-...

Learning and depicting lobe-based radiomics feature for COPD Severity staging in low-dose CT images.

BMC pulmonary medicine
BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a prevalent and debilitating respiratory condition that imposes a significant healthcare burden worldwide. Accurate staging of COPD severity is crucial for patient management and treatment p...

Enhancing semantic segmentation in chest X-ray images through image preprocessing: ps-KDE for pixel-wise substitution by kernel density estimation.

PloS one
BACKGROUND: In medical imaging, the integration of deep-learning-based semantic segmentation algorithms with preprocessing techniques can reduce the need for human annotation and advance disease classification. Among established preprocessing techniq...