Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
Sep 1, 2023
PURPOSE: Deep learning reconstruction (DLR) has been recommended as useful for improving image quality. Moreover, compressed sensing (CS) or DLR has been proposed as useful for improving temporal resolution and image quality on MR sequences in differ...
Objective analysis of rotator cuff (RC) atrophy and fatty infiltration (FI) from clinical MRI is limited by qualitative measures and variation in scapular coverage. The goals of this study were to: develop/evaluate a method to quantify RC muscle size...
AJNR. American journal of neuroradiology
Aug 31, 2023
BACKGROUND AND PURPOSE: An MRI of the fetus can enhance the identification of perinatal developmental disorders, which improves the accuracy of ultrasound. Manual MRI measurements require training, time, and intra-variability concerns. Pediatric neur...
Journal of magnetic resonance imaging : JMRI
Aug 30, 2023
Hepatocellular carcinoma (HCC) is the fifth most common malignancy and the third leading cause of cancer-related death worldwide. HCC exhibits strong inter-tumor heterogeneity, with different biological characteristics closely associated with prognos...
Journal of neuroradiology = Journal de neuroradiologie
Aug 29, 2023
PURPOSE: To determine if machine learning (ML) or deep learning (DL) pipelines perform better in AI-based three-class classification of glioblastoma (GBM), intracranial metastatic disease (IMD) and primary CNS lymphoma (PCNSL).
OBJECTIVE: Normal interictal [ F]FDG-PET can be predicted from the corresponding T1w MRI with Generative Adversarial Networks (GANs). A technique we call SIPCOM (Subtraction Interictal PET Co-registered to MRI) can then be used to compare epilepsy pa...
Deep-learning auto-contouring (DL-AC) promises standardisation of organ-at-risk (OAR) contouring, enhancing quality and improving efficiency in radiotherapy. No commercial models exist for OAR contouring based on brain magnetic resonance imaging (MRI...
RATIONALE AND OBJECTIVES: To develop and validate a T2-weighted magnetic resonance imaging (MRI)-based deep learning radiomics nomogram (DLRN) to differentiate between type I and type II epithelial ovarian cancer (EOC).
Adult-type diffuse glioma (grade 4) has infiltrating nature, and therefore local progression is likely to occur within surrounding non-enhancing T2 hyperintense areas even after gross total resection of contrast-enhancing lesions. Cerebral blood volu...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.