AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Metabolomics

Showing 31 to 40 of 298 articles

Clear Filters

Untargeted metabolomics and machine learning unveil the exposome and metabolism linked with the risk of early pregnancy loss.

Journal of hazardous materials
Early pregnancy loss (EPL) may result from exposure to emerging contaminants (ECs), although the underlying mechanisms remain poorly understood. This case-control study measured over 2000 serum features, including 37 ECs, 6 biochemicals, and 2057 end...

QuanFormer: A Transformer-Based Precise Peak Detection and Quantification Tool in LC-MS-Based Metabolomics.

Analytical chemistry
In metabolomic analysis based on liquid chromatography coupled with mass spectrometry, detecting and quantifying intricate objects is a massive job. Current peak picking methods still cause high rates of incorrectly picked peaks to influence the reli...

Perspective: Multiomics and Artificial Intelligence for Personalized Nutritional Management of Diabetes in Patients Undergoing Peritoneal Dialysis.

Advances in nutrition (Bethesda, Md.)
Managing diabetes in patients on peritoneal dialysis (PD) is challenging due to the combined effects of dietary glucose, glucose from dialysate, and other medical complications. Advances in technology that enable continuous biological data collection...

ABCoRT: Retention Time Prediction for Metabolite Identification via Atom-Bond Co-Learning.

Journal of chemical information and modeling
Liquid chromatography retention time (RT) prediction plays a crucial role in metabolite identification, a challenging and essential task in untargeted metabolomics. Accurate molecular representation is vital for reliable RT prediction. To address thi...

Precision fetal cardiology detects cyanotic congenital heart disease using maternal saliva metabolome and artificial intelligence.

Scientific reports
Prenatal sonographic diagnosis of congenital heart disease (CHD) can lead to improved morbidity and mortality. However, the diagnostic accuracy of ultrasound, the sole prenatal screening tool, remains limited. Failed prenatal or early newborn detecti...

Machine learning and multi-omics in precision medicine for ME/CFS.

Journal of translational medicine
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's hetero...

Machine Learning-Based Bioactivity Classification of Natural Products Using LC-MS/MS Metabolomics.

Journal of natural products
The rediscovery of known drug classes represents a major challenge in natural products drug discovery. Compound rediscovery inhibits the ability of researchers to explore novel natural products and wastes significant amounts of time and resources. Th...

Machine learning-based plasma metabolomics for improved cirrhosis risk stratification.

BMC gastroenterology
BACKGROUND: Cirrhosis is a leading cause of mortality in patients with chronic liver disease (CLD). The rapid development of metabolomic technologies has enabled the capture of metabolic changes related to the progression of cirrhosis.

A holistic strategy for the in-depth discrimination and authentication of 16 citrus herbs and associated commercial products based on machine learning techniques and non-targeted metabolomics.

Journal of chromatography. A
Citrus-derived raw medicinal materials are frequently used for health care, flavoring, and therapeutic purposes. However, Due to similarities in origin or appearance, citrus herbs are often misused in the market, necessitating effective differentiati...

Machine learning and metabolomics identify biomarkers associated with the disease extent of ulcerative colitis.

Journal of Crohn's & colitis
BACKGROUND AND AIMS: Ulcerative colitis (UC) is a metabolism-related chronic intestinal inflammatory disease. Disease extent is a key parameter of UC. Using serum metabolic profiling to identify noninvasive biomarkers of disease extent may inform the...