BACKGROUND: To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion.
BACKGROUND: As more and more older adults prefer to stay in their homes as they age, there's a need for technology to support this. A relevant technology is Artificial Intelligence (AI)-driven lifestyle monitoring, utilizing data from sensors placed ...
BACKGROUND: Deep learning (DL) has been shown to be successful in interpreting radiographs and aiding in fracture detection and classification. However, no study has aimed to develop a computer vision model for tibia plateau fractures using the Schat...
Clinical oncology (Royal College of Radiologists (Great Britain))
Mar 1, 2025
AIMS: To assess geometric accuracy and dosimetric impact of a deep learning segmentation (DLS) model on a large, diverse dataset of head and neck cancer (HNC) patients treated with intensity-modulated proton therapy (IMPT).
This study aims to develop a deep learning model using high-resolution vessel wall imaging (HR-VWI) to differentiate symptom-related intracranial and extracranial plaques, which is crucial for stroke treatment and prevention. We retrospectively analy...
This study aims to evaluate the clinical characteristics and biochemical parameters of hemophagocytic lymphohistiocytosis (HLH) patients to predict 30-day mortality. Parameters analyzed include lymphocyte count (L), platelet count (PLT), total protei...
OBJECTIVES: Develop an interpretable machine learning model to detect patients with newly diagnosed psoriatic arthritis (PsA) in a cohort of psoriasis patients and identify important clinical indicators of PsA in primary care.
PURPOSE: Lumbosacral nerve root anomalies are relatively rare but can be a risk factor for intraoperative nerve injury. However, it is often difficult to evaluate them with preoperative imaging. We developed a software that automatically generates th...
Asian Pacific journal of cancer prevention : APJCP
Mar 1, 2025
OBJECTIVE: Ovarian cancer's complexity and heterogeneity pose significant challenges in treatment, often resulting in suboptimal chemotherapy outcomes. This study aimed to leverage machine learning algorithms, gene selection, and gene expression dat...
OBJECTIVES: The evaluation of the prognosis of patients with acute ischemic stroke (AIS) is of great significance in clinical practice. We aim to evaluate the feasibility and effectiveness of diffusion-weighted imaging (DWI) image-based radiomics fea...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.