AIMC Topic:
Middle Aged

Clear Filters Showing 1691 to 1700 of 14390 articles

Current Practices and Perspectives of Artificial Intelligence in the Clinical Management of Eating Disorders: Insights From Clinicians and Community Participants.

The International journal of eating disorders
OBJECTIVE: Artificial intelligence (AI) could revolutionize the delivery of mental health care, helping to streamline clinician workflows and assist with diagnostic and treatment decisions. Yet, before AI can be integrated into practice, it is necess...

Prediction of Prostate Cancer From Routine Laboratory Markers With Automated Machine Learning.

Journal of clinical laboratory analysis
BACKGROUND: In this study, we attempted to select the optimum cases for a prostate biopsy based on routine laboratory test results in addition to prostate-specific antigen (PSA) blood test using H2O automated machine learning (AutoML) software, which...

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology
INTRODUCTION: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI a...

AI-generated cancer prevention influencers can target risk groups on social media at low cost.

European journal of cancer (Oxford, England : 1990)
BACKGROUND: This study explores the potential of Artificial Intelligence (AI)-generated social media influencers to disseminate cancer prevention messages. Utilizing a Generative AI (GenAI) application, we created a virtual persona, "Wanda", to promo...

AI-based assessment of longitudinal multiple sclerosis MRI: Strengths and weaknesses in clinical practice.

European journal of radiology
OBJECTIVES: In Multiple Sclerosis (MS) cerebral MRI is essential for disease and treatment monitoring. For this purpose, software solutions are available to support the radiologist with image interpretation and reporting of follow up imaging. Aim of ...

Advancements in Frank's sign Identification using deep learning on 3D brain MRI.

Scientific reports
Frank's sign (FS) is a diagnostic marker associated with aging and various health conditions. Despite its clinical significance, there lacks a standardized method for its identification. This study aimed to develop a deep learning model for automated...

A machine learning framework for short-term prediction of chronic obstructive pulmonary disease exacerbations using personal air quality monitors and lifestyle data.

Scientific reports
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease with a variety of symptoms including, persistent coughing and mucus production, shortness of breath, wheezing, and chest tightness. As the disease advances, exacerbations, i.e. a...

Endoscopic ultrasonography-based intratumoral and peritumoral machine learning ultrasomics model for predicting the pathological grading of pancreatic neuroendocrine tumors.

BMC medical imaging
OBJECTIVES: The objective is to develop and validate intratumoral and peritumoral ultrasomics models utilizing endoscopic ultrasonography (EUS) to predict pathological grading in pancreatic neuroendocrine tumors (PNETs).

Early Prediction of Cardio Vascular Disease (CVD) from Diabetic Retinopathy using improvised deep Belief Network (I-DBN) with Optimum feature selection technique.

BMC cardiovascular disorders
Cardio Vascular Disease (CVD) is one of the leading causes of mortality and it is estimated that 1 in 4 deaths happens due to it. The disease prevalence rate becomes higher since there is an inadequate system/model for predicting CVD at an earliest. ...