AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Natriuretic Peptide, Brain

Showing 1 to 10 of 34 articles

Clear Filters

Prediction of adverse cardiovascular events in children using artificial intelligence-based electrocardiogram.

International journal of cardiology
BACKGROUND: Convolutional neural networks (CNNs) have emerged as a novel method for evaluating heart failure (HF) in adult electrocardiograms (ECGs). However, such CNNs are not applicable to pediatric HF, where abnormal anatomy of congenital heart de...

Multimodal deep learning models utilizing chest X-ray and electronic health record data for predictive screening of acute heart failure in emergency department.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Ambiguity in diagnosing acute heart failure (AHF) leads to inappropriate treatment and potential side effects of rescue medications. To address this issue, this study aimed to use multimodality deep learning models combinin...

A two-stage ensemble learning based prediction and grading model for PD-1/PD-L1 inhibitor-related cardiac adverse events: A multicenter retrospective study.

Computer methods and programs in biomedicine
BACKGROUND: Immune-related cardiac adverse events (ircAEs) caused by programmed cell death protein-1 (PD-1) and programmed death-ligand-1 (PD-L1) inhibitors can lead to fulminant and even fatal consequences. This study aims to develop a prediction an...

Stratifying heart failure patients with graph neural network and transformer using Electronic Health Records to optimize drug response prediction.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVES: Heart failure (HF) impacts millions of patients worldwide, yet the variability in treatment responses remains a major challenge for healthcare professionals. The current treatment strategies, largely derived from population based evidence...

Machine learning-based model for worsening heart failure risk in Chinese chronic heart failure patients.

ESC heart failure
AIMS: This study aims to develop and validate an optimal model for predicting worsening heart failure (WHF). Multiple machine learning (ML) algorithms were compared, and the results were interpreted using SHapley Additive exPlanations (SHAP). A clini...

Machine learning-based prediction of elevated N terminal pro brain natriuretic peptide among US general population.

ESC heart failure
AIMS: Natriuretic peptide-based pre-heart failure screening has been proposed in recent guidelines. However, an effective strategy to identify screening targets from the general population, more than half of which are at risk for heart failure or pre...

Machine learning integration of multimodal data identifies key features of circulating NT-proBNP in people without cardiovascular diseases.

Scientific reports
N-Terminal Pro-Brain Natriuretic Peptide (NT-proBNP) is important for diagnosing and predicting heart failure or many other diseases. However, few studies have comprehensively assessed the factors correlated with NT-proBNP levels in people with cardi...