AIMC Topic: Observational Studies as Topic

Clear Filters Showing 41 to 50 of 53 articles

A Bayesian Approach to the G-Formula via Iterative Conditional Regression.

Statistics in medicine
In longitudinal observational studies with time-varying confounders, the generalized computation algorithm formula (g-formula) is a principled tool to estimate the average causal effect of a treatment regimen. However, the standard non-iterative g-fo...

AI-DBS study: protocol for a longitudinal prospective observational cohort study of patients with Parkinson's disease for the development of neuronal fingerprints using artificial intelligence.

BMJ open
INTRODUCTION: Deep brain stimulation (DBS) is a proven effective treatment for Parkinson's disease (PD). However, titrating DBS stimulation parameters is a labourious process and requires frequent hospital visits. Additionally, its current applicatio...

Machine learning of blood haemoglobin and haematocrit levels via smartphone conjunctiva photography in Kenyan pregnant women: a clinical study protocol.

BMJ open
INTRODUCTION: Anaemia during pregnancy is a widespread health burden globally, especially in low- and middle-income countries, posing a serious risk to both maternal and neonatal health. The primary challenge is that anaemia is frequently undetected ...

How Effective Are Machine Learning and Doubly Robust Estimators in Incorporating High-Dimensional Proxies to Reduce Residual Confounding?

Pharmacoepidemiology and drug safety
BACKGROUND: Residual confounding presents a persistent challenge in observational studies, particularly in high-dimensional settings. High-dimensional proxy adjustment methods, such as the high-dimensional propensity score (hdPS), are widely used to ...

AIPW: An R Package for Augmented Inverse Probability-Weighted Estimation of Average Causal Effects.

American journal of epidemiology
An increasing number of recent studies have suggested that doubly robust estimators with cross-fitting should be used when estimating causal effects with machine learning methods. However, not all existing programs that implement doubly robust estima...

Development and validation of phenotype classifiers across multiple sites in the observational health data sciences and informatics network.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVE: Accurate electronic phenotyping is essential to support collaborative observational research. Supervised machine learning methods can be used to train phenotype classifiers in a high-throughput manner using imperfectly labeled data. We dev...