AIMC Topic: Polymorphism, Single Nucleotide

Clear Filters Showing 361 to 370 of 397 articles

Epistasis Analysis: Classification Through Machine Learning Methods.

Methods in molecular biology (Clifton, N.J.)
Complex disease is different from Mendelian disorders. Its development usually involves the interaction of multiple genes or the interaction between genes and the environment (i.e. epistasis). Although the high-throughput sequencing technologies for ...

Epistasis Detection Based on Epi-GTBN.

Methods in molecular biology (Clifton, N.J.)
Epistasis detection is a hot topic in bioinformatics due to its relevance to the detection of specific phenotypic traits and gene-gene interactions. Here, we present a step-by-step protocol to apply Epi-GTBN, a machine learning-based method based on ...

A Belief Degree-Associated Fuzzy Multifactor Dimensionality Reduction Framework for Epistasis Detection.

Methods in molecular biology (Clifton, N.J.)
Epistasis is a challenge in prediction, classification, and suspicion of human genetic diseases. Many technologies, methods, and tools have been developed for epistasis detection. Multifactor dimensionality reduction (MDR) is the method commonly used...

Protocol for Epistasis Detection with Machine Learning Using GenEpi Package.

Methods in molecular biology (Clifton, N.J.)
To develop medical treatments and prevention, the association between disease and genetic variants needs to be identified. The main goal of genome-wide association study (GWAS) is to discover the underlying reason for vulnerability to disease and uti...

Brief Survey on Machine Learning in Epistasis.

Methods in molecular biology (Clifton, N.J.)
In biology, the term "epistasis" indicates the effect of the interaction of a gene with another gene. A gene can interact with an independently sorted gene, located far away on the chromosome or on an entirely different chromosome, and this interacti...

PheMap: a multi-resource knowledge base for high-throughput phenotyping within electronic health records.

Journal of the American Medical Informatics Association : JAMIA
OBJECTIVE: Developing algorithms to extract phenotypes from electronic health records (EHRs) can be challenging and time-consuming. We developed PheMap, a high-throughput phenotyping approach that leverages multiple independent, online resources to s...

Prediction of survival rate and effect of drugs on cancer patients with somatic mutations of genes: An AI-based approach.

Chemical biology & drug design
The causal role of somatic mutation and its interrelationship with gene expression profile during tumor development has already been observed, which plays a major role to decide the cancer grades and overall survival. Accurate and robust prediction o...

Ensemble-Based Somatic Mutation Calling in Cancer Genomes.

Methods in molecular biology (Clifton, N.J.)
Identification of somatic mutations in tumor tissue is challenged by both technical artifacts, diverse somatic mutational processes, and genetic heterogeneity in the tumors. Indeed, recent independent benchmark studies have revealed low concordance b...

Convolutional Neural Network Visualization for Identification of Risk Genes in Bipolar Disorder.

Current molecular medicine
BACKGROUND: Bipolar disorder (BD) is a type of chronic emotional disorder with a complex genetic structure. However, its genetic molecular mechanism is still unclear, which makes it insufficient to be diagnosed and treated.