AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Predictive Value of Tests

Showing 131 to 140 of 2090 articles

Clear Filters

Artificial Intelligence and Whole Slide Imaging Assist in Thyroid Indeterminate Cytology: A Systematic Review.

Acta cytologica
INTRODUCTION: Thyroid cytopathology, particularly in cases of atypia of undetermined significance/follicular lesions of undetermined significance (AUS/FLUS), suffers from suboptimal sensitivity and specificity challenges. Recent advancements in digit...

Development of Time-Aggregated Machine Learning Model for Relapse Prediction in Pediatric Crohn's Disease.

Clinical and translational gastroenterology
INTRODUCTION: Pediatric Crohn's disease (CD) easily progresses to an active disease compared with adult CD, making it important to predict and minimize CD relapses. However, prediction of relapse at various time points (TPs) during pediatric CD remai...

An artificial intelligence application to predict prolonged dependence on mechanical ventilation among patients with critical orthopaedic trauma: an establishment and validation study.

BMC musculoskeletal disorders
BACKGROUND: Prolonged dependence on mechanical ventilation is a common occurrence in clinical ICU patients and presents significant challenges for patient care and resource allocation. Predicting prolonged dependence on mechanical ventilation is cruc...

Multi-stain deep learning prediction model of treatment response in lupus nephritis based on renal histopathology.

Kidney international
The response of the kidney after induction treatment is one of the determinants of prognosis in lupus nephritis, but effective predictive tools are lacking. Here, we sought to apply deep learning approaches on kidney biopsies for treatment response p...

Predicting lack of clinical improvement following varicose vein ablation using machine learning.

Journal of vascular surgery. Venous and lymphatic disorders
OBJECTIVE: Varicose vein ablation is generally indicated in patients with active/healed venous ulcers. However, patient selection for intervention in individuals without venous ulcers is less clear. Tools that predict lack of clinical improvement (LC...

MRI-derived radiomics and end-to-end deep learning models for predicting glioma ATRX status: a systematic review and meta-analysis of diagnostic test accuracy studies.

Clinical imaging
We aimed to systematically review and meta-analyze the predictive value of magnetic resonance imaging (MRI)-derived radiomics/end-to-end deep learning (DL) models in predicting glioma alpha thalassemia/mental retardation syndrome X-linked (ATRX) stat...

Predicting benefit from PARP inhibitors using deep learning on H&E-stained ovarian cancer slides.

European journal of cancer (Oxford, England : 1990)
PURPOSE: Ovarian cancer patients with a Homologous Recombination Deficiency (HRD) often benefit from polyadenosine diphosphate-ribose polymerase (PARP) inhibitor maintenance therapy after response to platinum-based chemotherapy. HR status is currentl...