AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Predictive Value of Tests

Showing 151 to 160 of 2090 articles

Clear Filters

Machine learning based prediction model for bile leak following hepatectomy for liver cancer.

HPB : the official journal of the International Hepato Pancreato Biliary Association
OBJECTIVE: We sought to develop a machine learning (ML) preoperative model to predict bile leak following hepatectomy for primary and secondary liver cancer.

Using artificial intelligence to predict post-operative outcomes in congenital heart surgeries: a systematic review.

BMC cardiovascular disorders
INTRODUCTION: Congenital heart disease (CHD) represents the most common group of congenital anomalies, constitutes a significant contributor to the burden of non-communicable diseases, highlighting the critical need for improved risk assessment tools...

Machine learning to predict the decision to perform surgery in hepatic echinococcosis.

HPB : the official journal of the International Hepato Pancreato Biliary Association
BACKGROUND: Cystic echinococcosis (CE) is a significant public health issue, primarily affecting the liver. While several management strategies exist, there is a lack of predictive tools to guide surgical decisions for hepatic CE. This study aimed to...

Predicting Early recurrence of atrial fibrilation post-catheter ablation using machine learning techniques.

BMC cardiovascular disorders
BACKGROUND: Catheter ablation is a common treatment for atrial fibrillation (AF), but recurrence rates remain variable. Predicting the success of catheter ablation is crucial for patient selection and management. This research seeks to create a machi...

Deep learning and radiomics-based vascular calcification characterization in dental cone beam computed tomography as a predictive tool for cardiovascular disease: a proof-of-concept study.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVES: This study evaluated an automated deep learning method for detecting calcifications in the extracranial and intracranial carotid arteries and vertebral arteries in cone beam computed tomography (CBCT) scans. Additionally, a model utilizin...

Evaluation of a machine learning-based metabolic marker for coronary artery disease in the UK Biobank.

Atherosclerosis
BACKGROUND AND AIMS: An in silico quantitative score of coronary artery disease (ISCAD), built using machine learning and clinical data from electronic health records, has been shown to result in gradations of risk of subclinical atherosclerosis, cor...

Detection of cardiac amyloidosis using machine learning on routine echocardiographic measurements.

Open heart
BACKGROUND: Cardiac amyloidosis (CA) is an underdiagnosed, progressive and lethal disease. Machine learning applied to common measurements derived from routine echocardiogram studies can inform suspicion of CA.

Machine Learning for In-hospital Mortality Prediction in Critically Ill Patients With Acute Heart Failure: A Retrospective Analysis Based on the MIMIC-IV Database.

Journal of cardiothoracic and vascular anesthesia
BACKGROUND: The incidence, mortality, and readmission rates for acute heart failure (AHF) are high, and the in-hospital mortality for AHF patients in the intensive care unit (ICU) is higher. However, there is currently no method to accurately predict...

Noncontrast MRI-based machine learning and radiomics signature can predict the severity of primary lower limb lymphedema.

Journal of vascular surgery. Venous and lymphatic disorders
OBJECTIVE: According to International Lymphology Society guidelines, the severity of lymphedema is determined by the difference in volume between the affected limb and the healthy side divided by the volume of the healthy side. However, this method o...