AIMC Topic: Proportional Hazards Models

Clear Filters Showing 41 to 50 of 267 articles

Random Survival Forest Machine Learning for the Prediction of Cardiovascular Events Among Patients With a Measured Lipoprotein(a) Level: A Model Development Study.

Circulation. Genomic and precision medicine
BACKGROUND: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.

Personalized treatment strategies for breast adenoid cystic carcinoma: A machine learning approach.

Breast (Edinburgh, Scotland)
BACKGROUND: Breast adenoid cystic carcinoma (BACC) is a rare subtype of breast cancer that accounts for less than 0.1 % of all cases. This study was designed to assess the efficacy of various treatment approaches for BACC and to create the first web-...

Survival parametric modeling for patients with heart failure based on Kernel learning.

BMC medical research methodology
Time-to-event data are very common in medical applications. Regression models have been developed on such data especially in the field of survival analysis. Kernels are used to handle even more complicated and enormous quantities of medical data by i...

Prognostic Features for Overall Survival in Male Diabetic Patients Undergoing Hemodialysis Using Elastic Net Penalized Cox Regression; A Machine Learning Approach.

Archives of Iranian medicine
BACKGROUND: Diabetics constitute a significant percentage of hemodialysis (HD) patients with higher mortality, especially among male patients. A machine learning algorithm was used to optimize the prediction of time to death in male diabetic hemodial...

Development of an individualized dementia risk prediction model using deep learning survival analysis incorporating genetic and environmental factors.

Alzheimer's research & therapy
BACKGROUND: Dementia is a major public health challenge in modern society. Early detection of high-risk dementia patients and timely intervention or treatment are of significant clinical importance. Neural network survival analysis represents the mos...

Estimating cardiovascular mortality in patients with hypertension using machine learning: The role of depression classification based on lifestyle and physical activity.

Journal of psychosomatic research
PURPOSE: This study aims to harness machine learning techniques, particularly the Random Survival Forest (RSF) model, to assess the impact of depression on cardiovascular disease (CVD) mortality among hypertensive patients. A key objective is to eluc...

Construction of a random survival forest model based on a machine learning algorithm to predict early recurrence after hepatectomy for adult hepatocellular carcinoma.

BMC cancer
BACKGROUND AND AIMS: Hepatocellular carcinoma (HCC) exhibits a propensity for early recurrence following liver resection, resulting in a bleak prognosis. At present, majority of the predictive models for the early postoperative recurrence of HCC rely...

Machine learning algorithms that predict the risk of prostate cancer based on metabolic syndrome and sociodemographic characteristics: a prospective cohort study.

BMC public health
BACKGROUND: Given the rapid increase in the prevalence of prostate cancer (PCa), identifying its risk factors and developing suitable risk prediction models has important implications for public health. We used machine learning (ML) approach to scree...

Prognostic models for progression-free survival in atypical meningioma: Comparison of machine learning-based approach and the COX model in an Asian multicenter study.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Atypical meningiomas are prevalent intracranial tumors with varied prognoses and recurrence rates. The role of adjuvant radiotherapy (ART) in atypical meningiomas remains debated. This study aimed to develop and validate a pro...

Exploring phenotypes to improve long-term mortality risk stratification in obstructive sleep apnea through a machine learning approach: an observational cohort study.

European journal of internal medicine
BACKGROUND: Obstructive sleep apnea (OSA) is a heterogeneous sleep disorder for which the identification of phenotypes might help for risk stratification for long-term mortality. Thus, the aim of the study was to identify distinct phenotypes of OSA a...