AIMC Topic: Radiomics

Clear Filters Showing 201 to 210 of 618 articles

Development and Validation of a Machine Learning Radiomics Model based on Multiparametric MRI for Predicting Progesterone Receptor Expression in Meningioma: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: This study aimed to develop and validate a machine learning-based prediction model for preoperatively predicting progesterone receptor (PR) expression in meningioma patients using multiparametric magnetic resonance imaging (...

F-FDG PET/CT-based habitat radiomics combining stacking ensemble learning for predicting prognosis in hepatocellular carcinoma: a multi-center study.

BMC cancer
BACKGROUND: This study aims to develop habitat radiomic models to predict overall survival (OS) for hepatocellular carcinoma (HCC), based on the characterization of the intratumoral heterogeneity reflected in F-FDG PET/CT images.

MRI-based radiomic and machine learning for prediction of lymphovascular invasion status in breast cancer.

BMC medical imaging
OBJECTIVE: Lymphovascular invasion (LVI) is critical for the effective treatment and prognosis of breast cancer (BC). This study aimed to investigate the value of eight machine learning models based on MRI radiomic features for the preoperative predi...

Interpretable machine learning model based on CT semantic features and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors.

Scientific reports
To develop and validate a machine learning (ML) model which combined computed tomography (CT) semantic and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs) patients. We retrospectively collected...

The Value of Whole-Volume Radiomics Machine Learning Model Based on Multiparametric MRI in Predicting Triple-Negative Breast Cancer.

Journal of computer assisted tomography
OBJECTIVE: This study aimed to investigate the value of radiomics analysis in the precise diagnosis of triple-negative breast cancer (TNBC) based on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coeffici...

An Application of Machine-Learning-Oriented Radiomics Model in Clear Cell Renal Cell Carcinoma (ccRCC) Early Diagnosis.

British journal of hospital medicine (London, England : 2005)
Clear cell renal cell carcinoma (ccRCC) is a common and aggressive form of kidney cancer, where early diagnosis is crucial for improving prognosis and treatment outcomes. Radiomics, which utilizes machine learning techniques, presents a promising ap...