RATIONALE AND OBJECTIVES: Perineural invasion (PNI) is an important prognostic biomarker for prostate cancer (PCa). This study aimed to develop and validate a predictive model integrating biparametric MRI-based deep learning radiomics and clinical ch...
The primary aim of this study was to conduct a methodical examination and assessment of the prognostic efficacy exhibited by magnetic resonance imaging (MRI)-derived radiomic models concerning the preoperative prediction of lymph-vascular space infil...
OBJECTIVES: This study utilizes [Tc]-methylene diphosphate (MDP) single photon emission computed tomography (SPECT) images as a reference standard to evaluate whether the integration of radiomics features from computed tomography (CT) and machine lea...
OBJECTIVE: To establish a machine learning model based on radiomics and clinical features derived from non-contrast CT to predict futile recanalization (FR) in patients with anterior circulation acute ischemic stroke (AIS) undergoing endovascular tre...
BACKGROUND: Lenvatinib plus PD-1 inhibitors and interventional (LPI) therapy have demonstrated promising treatment effects in unresectable hepatocellular carcinoma (HCC). However, biomarkers for predicting the response to LPI therapy remain to be fur...
BACKGROUND: Machine learning classifiers are increasingly used to create predictive models for pathological complete response (pCR) in breast cancer after neoadjuvant therapy (NAT). Few studies have compared the effectiveness of different ML classifi...
RATIONALE AND OBJECTIVES: To assess the efficacy of a preoperative contrast-enhanced CT (CECT)-based deep learning radiomics nomogram (DLRN) for predicting murine double minute 2 (MDM2) gene amplification as a means of distinguishing between retroper...
Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
Jul 14, 2024
PURPOSE: To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade ≥ 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT)...
The study aims to investigate the predictive capability of machine learning algorithms for omental metastasis in locally advanced gastric cancer (LAGC) and to compare the performance metrics of various machine learning predictive models. A retrospect...
OBJECTIVE: The objective of this study was to develop a deep learning-and-radiomics-based ultrasound nomogram for the evaluation of axillary lymph node (ALN) metastasis risk in breast cancer patients ≥ 75 years.