AIMC Topic: Radiomics

Clear Filters Showing 351 to 360 of 622 articles

Integrating intratumoral and peritumoral radiomics with deep transfer learning for DCE-MRI breast lesion differentiation: A multicenter study comparing performance with radiologists.

European journal of radiology
PURPOSE: To conduct the fusion of radiomics and deep transfer learning features from the intratumoral and peritumoral areas in breast DCE-MRI images to differentiate between benign and malignant breast tumors, and to compare the diagnostic accuracy o...

Identification of Prolactinoma in Pituitary Neuroendocrine Tumors Using Radiomics Analysis Based on Multiparameter MRI.

Journal of imaging informatics in medicine
This study aims to investigate the feasibility of preoperatively predicting histological subtypes of pituitary neuroendocrine tumors (PitNETs) using machine learning and radiomics based on multiparameter MRI. Patients with PitNETs from January 2016 t...

The impact of the combat method on radiomics feature compensation and analysis of scanners from different manufacturers.

BMC medical imaging
BACKGROUND: This study investigated whether the Combat compensation method can remove the variability of radiomic features extracted from different scanners, while also examining its impact on the subsequent predictive performance of machine learning...

Ultrasound contrast-enhanced radiomics model for preoperative prediction of the tumor grade of clear cell renal cell carcinoma: an exploratory study.

BMC medical imaging
BACKGROUND: This study aims to explore machine learning(ML) methods for non-invasive assessment of WHO/ISUP nuclear grading in clear cell renal cell carcinoma(ccRCC) using contrast-enhanced ultrasound(CEUS) radiomics.

Integration of deep learning and habitat radiomics for predicting the response to immunotherapy in NSCLC patients.

Cancer immunology, immunotherapy : CII
BACKGROUND: The non-invasive biomarkers for predicting immunotherapy response are urgently needed to prevent both premature cessation of treatment and ineffective extension. This study aimed to construct a non-invasive model for predicting immunother...

A comprehensive approach for osteoporosis detection through chest CT analysis and bone turnover markers: harnessing radiomics and deep learning techniques.

Frontiers in endocrinology
PURPOSE: The main objective of this study is to assess the possibility of using radiomics, deep learning, and transfer learning methods for the analysis of chest CT scans. An additional aim is to combine these techniques with bone turnover markers to...

Radiomics-based machine learning approach for the prediction of grade and stage in upper urinary tract urothelial carcinoma: a step towards virtual biopsy.

International journal of surgery (London, England)
OBJECTIVES: Upper tract urothelial carcinoma (UTUC) is a rare, aggressive lesion, with early detection a key to its management. This study aimed to utilise computed tomographic urogram data to develop machine learning models for predicting tumour gra...

CT-based radiomics analysis of different machine learning models for differentiating gnathic fibrous dysplasia and ossifying fibroma.

Oral diseases
OBJECTIVE: In this study, our aim was to develop and validate the effectiveness of diverse radiomic models for distinguishing between gnathic fibrous dysplasia (FD) and ossifying fibroma (OF) before surgery.

Machine learning model based on radiomics features for AO/OTA classification of pelvic fractures on pelvic radiographs.

PloS one
Depending on the degree of fracture, pelvic fracture can be accompanied by vascular damage, and in severe cases, it may progress to hemorrhagic shock. Pelvic radiography can quickly diagnose pelvic fractures, and the Association for Osteosynthesis Fo...

Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.

Journal of ultrasound in medicine : official journal of the American Institute of Ultrasound in Medicine
OBJECTIVE: This study seeks to construct a machine learning model that merges clinical characteristics with ultrasound radiomic analysis-encompassing both the intratumoral and peritumoral-to predict the status of axillary lymph nodes in patients with...