AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiomics

Showing 351 to 360 of 520 articles

Clear Filters

Machine Learning Model Based on Radiomics for Preoperative Differentiation of Jaw Cystic Lesions.

Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery
OBJECTIVE: This study aims to use machine learning techniques together with radiomics methods to build a preoperative predictive diagnostic model from spiral computed tomography (CT) images. The model is intended for the differential diagnosis of com...

Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.

Frontiers in endocrinology
PURPOSE: To develop and validate a deep learning radiomics (DLR) model that uses X-ray images to predict the classification of osteoporotic vertebral fractures (OVFs).

Radiomics-based machine learning in the differentiation of benign and malignant bowel wall thickening radiomics in bowel wall thickening.

Japanese journal of radiology
PURPOSE: To distinguish malignant and benign bowel wall thickening (BWT) by using computed tomography (CT) texture features based on machine learning (ML) models and to compare its success with the clinical model and combined model.

Application of deep learning radiomics in oral squamous cell carcinoma-Extracting more information from medical images using advanced feature analysis.

Journal of stomatology, oral and maxillofacial surgery
OBJECTIVE: To conduct a systematic review with meta-analyses to assess the recent scientific literature addressing the application of deep learning radiomics in oral squamous cell carcinoma (OSCC).

Preoperative detection of hepatocellular carcinoma's microvascular invasion on CT-scan by machine learning and radiomics: A preliminary analysis.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
INTRODUCTION: Microvascular invasion (MVI) is the main risk factor for overall mortality and recurrence after surgery for hepatocellular carcinoma (HCC).The aim was to train machine-learning models to predict MVI on preoperative CT scan.

Dual-Region Computed Tomography Radiomics-Based Machine Learning Predicts Subcarinal Lymph Node Metastasis in Patients with Non-small Cell Lung Cancer.

Annals of surgical oncology
BACKGROUND: Noninvasively and accurately predicting subcarinal lymph node metastasis (SLNM) for patients with non-small cell lung cancer (NSCLC) remains challenging. This study was designed to develop and validate a tumor and subcarinal lymph nodes (...

Can we predict pathology without surgery? Weighing the added value of multiparametric MRI and whole prostate radiomics in integrative machine learning models.

European radiology
OBJECTIVE: To test the ability of high-performance machine learning (ML) models employing clinical, radiological, and radiomic variables to improve non-invasive prediction of the pathological status of prostate cancer (PCa) in a large, single-institu...

Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study.

Academic radiology
RATIONALE AND OBJECTIVES: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to expl...

Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma.

BMC women's health
BACKGROUND: Surgery combined with radiotherapy substantially escalates the likelihood of encountering complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of Deep-learning-based radiomics of i...