AIMC Topic: Recurrence

Clear Filters Showing 71 to 80 of 164 articles

Artificial Inteligence-Based Decision for the Prediction of Cardioembolism in Patients with Chagas Disease and Ischemic Stroke.

Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association
BACKGROUND: Chagas disease (CD) and ischemic stroke (IS) have a close, but poorly understood, association. There is paucity of evidence on the ideal secondary prophylaxis and etiological determination, with few cardioembolic patients being identified...

Multi-institutional development and external validation of machine learning-based models to predict relapse risk of pancreatic ductal adenocarcinoma after radical resection.

Journal of translational medicine
BACKGROUND: Surgical resection is the only potentially curative treatment for pancreatic ductal adenocarcinoma (PDAC) and the survival of patients after radical resection is closely related to relapse. We aimed to develop models to predict the risk o...

Identifying multiple sclerosis subtypes using unsupervised machine learning and MRI data.

Nature communications
Multiple sclerosis (MS) can be divided into four phenotypes based on clinical evolution. The pathophysiological boundaries of these phenotypes are unclear, limiting treatment stratification. Machine learning can identify groups with similar features ...

Machine Learning for Prediction and Risk Stratification of Lupus Nephritis Renal Flare.

American journal of nephrology
BACKGROUND: Renal flare of lupus nephritis (LN) is strongly associated with poor kidney outcomes, and predicting renal flare and stratifying its risk are important for clinical decision-making and individualized management to reduce LN flare.

A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT.

BMC medical imaging
OBJECTIVE: To investigate left atrial shape differences on CT scans of atrial fibrillation (AF) patients with (AF+) versus without (AF-) post-ablation recurrence and whether these shape differences predict AF recurrence.

Machine Learning Identifies Metabolic Signatures that Predict the Risk of Recurrent Angina in Remitted Patients after Percutaneous Coronary Intervention: A Multicenter Prospective Cohort Study.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Recurrent angina (RA) after percutaneous coronary intervention (PCI) has few known risk factors, hampering the identification of high-risk populations. In this multicenter study, plasma samples are collected from patients with stable angina after PCI...

Leveraging electronic health records data to predict multiple sclerosis disease activity.

Annals of clinical and translational neurology
OBJECTIVE: No relapse risk prediction tool is currently available to guide treatment selection for multiple sclerosis (MS). Leveraging electronic health record (EHR) data readily available at the point of care, we developed a clinical tool for predic...

CKLF and IL1B transcript levels at diagnosis are predictive of relapse in children with pre-B-cell acute lymphoblastic leukaemia.

British journal of haematology
Disease relapse is the greatest cause of treatment failure in paediatric B-cell acute lymphoblastic leukaemia (B-ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine-learning approach to identi...

Robot-assisted vs. laparoscopic repair of complete upside-down stomach hiatal hernia (the RATHER-study): a prospective comparative single center study.

Surgical endoscopy
BACKGROUND: Complete upside-down stomach (cUDS) hernias are a subgroup of large hiatal hernias characterized by high risk of life-threatening complications and technically challenging surgical repair including complex mediastinal dissection. In a pro...