AIMC Topic: Retrospective Studies

Clear Filters Showing 681 to 690 of 9172 articles

Clinical Validation of an AI System for Pneumoconiosis Detection Using Chest X-rays.

Journal of occupational and environmental medicine
OBJECTIVE: The aims of the study were to develop and evaluate "eTóraxLaboral," an intelligent platform for detecting signs of pneumoconiosis in chest radiographs and to assess its predictive capacity.

A novel artificial intelligence-powered tool for automated root canal segmentation in single-rooted teeth on cone-beam computed tomography.

International endodontic journal
AIM: To develop and validate an artificial intelligence (AI)-powered tool based on convolutional neural network (CNN) for automatic segmentation of root canals in single-rooted teeth using cone-beam computed tomography (CBCT).

Development and validation of machine learning-based prediction model for central venous access device-related thrombosis in children.

Thrombosis research
BACKGROUND: Identifying independent risk factors and implementing high-quality assessment tools for early detection of patients at high risk of central venous access device (CVAD)-related thrombosis (CRT) plays a critical role in delivering timely pr...

Establishing a preoperative predictive model for gallbladder adenoma and cholesterol polyps based on machine learning: a multicentre retrospective study.

World journal of surgical oncology
BACKGROUND: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperativ...

Identification of patient demographic, clinical, and SARS-CoV-2 genomic factors associated with severe COVID-19 using supervised machine learning: a retrospective multicenter study.

BMC infectious diseases
BACKGROUND: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus ...

Prediction of the Serial Alignment Change after Opening-Wedge High Tibial Osteotomy Based on Coronal Plane Alignment of the Knee Using Machine Learning Algorithm.

The journal of knee surgery
Categorization of alignment into phenotypes can be useful for predicting and analyzing postoperative alignment changes after opening-wedge high tibial osteotomy (OWHTO). The purposes of this study were to (1) develop a machine learning model for the ...

Identifying Primary Sites of Spinal Metastases: Expert-Derived Features vs. ResNet50 Model Using Nonenhanced MRI.

Journal of magnetic resonance imaging : JMRI
BACKGROUND: The spinal column is a frequent site for metastases, affecting over 30% of solid tumor patients. Identifying the primary tumor is essential for guiding clinical decisions but often requires resource-intensive diagnostics.

An Artificial Intelligence Model Using Diffusion Basis Spectrum Imaging Metrics Accurately Predicts Clinically Significant Prostate Cancer.

The Journal of urology
PURPOSE: Conventional prostate magnetic resonance imaging has limited accuracy for clinically significant prostate cancer (csPCa). We performed diffusion basis spectrum imaging (DBSI) before biopsy and applied artificial intelligence models to these ...