AI Medical Compendium Topic:
Risk Factors

Clear Filters Showing 751 to 760 of 2361 articles

Long-Term Mortality Predictors Using a Machine-Learning Approach in Patients With Chronic Limb-Threatening Ischemia After Peripheral Vascular Intervention.

Journal of the American Heart Association
BACKGROUND: Patients with chronic limb-threatening ischemia (CLTI) face a high long-term mortality risk. Identifying novel mortality predictors and risk profiles would enable individual health care plan design and improved survival. We aimed to lever...

AI-enhanced integration of genetic and medical imaging data for risk assessment of Type 2 diabetes.

Nature communications
Type 2 diabetes (T2D) presents a formidable global health challenge, highlighted by its escalating prevalence, underscoring the critical need for precision health strategies and early detection initiatives. Leveraging artificial intelligence, particu...

Application of machine-learning model to optimize colonic adenoma detection in India.

Indian journal of gastroenterology : official journal of the Indian Society of Gastroenterology
AIMS: There is limited data on the prevalence and risk factors of colonic adenoma from the Indian sub-continent. We aimed at developing a machine-learning model to optimize colonic adenoma detection in a prospective cohort.

Machine Learning-Based Prediction of Suicidal Thinking in Adolescents by Derivation and Validation in 3 Independent Worldwide Cohorts: Algorithm Development and Validation Study.

Journal of medical Internet research
BACKGROUND: Suicide is the second-leading cause of death among adolescents and is associated with clusters of suicides. Despite numerous studies on this preventable cause of death, the focus has primarily been on single nations and traditional statis...

Machine Learning Differentiates Extracorporeal Membrane Oxygenation Mortality Risk Profiles Among Trauma Patients.

The American surgeon
BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is resource intensive with high mortality. Identifying trauma patients most likely to derive a survival benefit remains elusive despite current ECMO guidelines. Our objective was to identify uniq...

Impact of an artificial intelligence based model to predict non-transplantable recurrence among patients with hepatocellular carcinoma.

HPB : the official journal of the International Hepato Pancreato Biliary Association
OBJECTIVE: We sought to develop Artificial Intelligence (AI) based models to predict non-transplantable recurrence (NTR) of hepatocellular carcinoma (HCC) following hepatic resection (HR).

Development of interpretable machine learning models to predict in-hospital prognosis of acute heart failure patients.

ESC heart failure
AIMS: In recent years, there has been remarkable development in machine learning (ML) models, showing a trend towards high prediction performance. ML models with high prediction performance often become structurally complex and are frequently perceiv...

Development of a machine learning model for predicting pneumothorax risk in coaxial core needle biopsy (≤3 cm).

European journal of radiology
PURPOSE: The aim is to devise a machine learning algorithm exploiting preoperative clinical data to forecast the hazard of pneumothorax post-coaxial needle lung biopsy (CCNB), thereby informing clinical decision-making and enhancing perioperative car...