We developed machine learning (ML) algorithms to predict abnormal tau accumulation among patients with prodromal AD. We recruited 64 patients with prodromal AD using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. Supervised ML approa...
OBJECTIVE: An objective and convenient primary triage procedure is needed for prioritizing patients who need help in mass casualty incident (MCI) situations, where there is a lack of medical staff and available resources. This study aimed to develop ...
BACKGROUND: Probe electrospray ionization-mass spectrometry (PESI-MS) can rapidly visualize mass spectra of small, surgically obtained tissue samples, and is a promising novel diagnostic tool when combined with machine learning which discriminates ma...
OBJECTIVE: To develop a machine learning (ML) pipeline based on radiomics to predict Coronavirus Disease 2019 (COVID-19) severity and the future deterioration to critical illness using CT and clinical variables.
OBJECTIVE: To investigate left atrial shape differences on CT scans of atrial fibrillation (AF) patients with (AF+) versus without (AF-) post-ablation recurrence and whether these shape differences predict AF recurrence.
OBJECTIVES: To develop a lightweight deep convolutional neural network (CNN) for binary classification of oral lesions into benign and malignant or potentially malignant using standard real-time clinical images.
The COVID-19 pandemic has devastated the world with health and economic wreckage. Precise estimates of adverse outcomes from COVID-19 could have led to better allocation of healthcare resources and more efficient targeted preventive measures, includi...
Controlling quality of next-generation sequencing (NGS) data files is a necessary but complex task. To address this problem, we statistically characterize common NGS quality features and develop a novel quality control procedure involving tree-based ...
Chronic HBV infection, the main cause of liver cirrhosis and hepatocellular carcinoma, has become a global health concern. Machine learning algorithms are particularly adept at analyzing medical phenomenon by capturing complex and nonlinear relations...
BACKGROUND: There are no established accurate models that use machine learning (ML) methods to preoperatively predict immediate remission after transsphenoidal surgery (TSS) in patients diagnosed with histology-positive Cushing's disease (CD).
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.