PURPOSE: To evaluate the performance of a machine learning method based on texture features in multi-parametric magnetic resonance imaging (MRI) to differentiate a glioblastoma multiforme (GBM) from a primary cerebral nervous system lymphoma (PCNSL).
PURPOSE: To evaluate performance and the clinical impact of a novel machine learning based vessel-suppressing computer-aided detection (CAD) software in chest computed tomography (CT) of patients with malignant melanoma.
Glioblastoma multiforme (GBM) are aggressive brain tumors, which lead to poor overall survival (OS) of patients. OS prediction of GBM patients provides useful information for surgical and treatment planning. Radiomics research attempts at predicting ...
BACKGROUND: Biomedical knowledge graphs have become important tools to computationally analyse the comprehensive body of biomedical knowledge. They represent knowledge as subject-predicate-object triples, in which the predicate indicates the relation...
BACKGROUND: Value-based and patient-specific care represent 2 critical areas of focus that have yet to be fully reconciled by today's bundled care model. Using a predictive naïve Bayesian model, the objectives of this study were (1) to develop a mach...
IEEE journal of biomedical and health informatics
Sep 3, 2018
Parkinson's disease (PD) is a neurodegenerative progressive disease that mainly affects the motor systems of patients. To slow this disease deterioration, early and accurate diagnosis of PD is an effective way, which alleviates mental and physical su...
The purpose of this study was to evaluate the performance of the deep convolutional neural network (DCNN) in differentiating between tuberculous and pyogenic spondylitis on magnetic resonance (MR) imaging, compared to the performance of three skilled...
BACKGROUND: Technological advances are enabling us to collect multimodal datasets at an increasing depth and resolution while with decreasing labors. Understanding complex interactions among multimodal datasets, however, is challenging.
Canadian journal of ophthalmology. Journal canadien d'ophtalmologie
Aug 31, 2018
OBJECTIVE: Support vector machines (SVM) is a newer statistical method that has been reported to be advantageous to traditional logistic regression for clinical classification. We determine if SVM can better predict the results of temporal artery bio...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.