AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Sepsis

Showing 11 to 20 of 307 articles

Clear Filters

Hope for the best prepare for the worst: acute kidney disease and catastrophic comorbidities (a case report).

The Pan African medical journal
It is evident that Acute Kidney Injury (AKI) is an independent risk factor for both the survival of patients and their kidneys. Here, we present a case of oliguric AKI secondary to blunt trauma-induced crush syndrome complicated with severe sepsis in...

Large Language Model-Driven Knowledge Graph Construction in Sepsis Care Using Multicenter Clinical Databases: Development and Usability Study.

Journal of medical Internet research
BACKGROUND: Sepsis is a complex, life-threatening condition characterized by significant heterogeneity and vast amounts of unstructured data, posing substantial challenges for traditional knowledge graph construction methods. The integration of large...

Machine learning approach for the prediction of 30-day mortality in patients with sepsis-associated delirium.

PloS one
This study aimed to develop models for predicting the 30-day mortality of sepsis-associated delirium (SAD) by multiple machine learning (ML) algorithms. On the whole, a cohort of 3,197 SAD patients were collected from the Medical Information Mart for...

Comprehensive integration of diagnostic biomarker analysis and immune cell infiltration features in sepsis via machine learning and bioinformatics techniques.

Frontiers in immunology
INTRODUCTION: Sepsis, a critical medical condition resulting from an irregular immune response to infection, leads to life-threatening organ dysfunction. Despite medical advancements, the critical need for research into dependable diagnostic markers ...

Harness machine learning for multiple prognoses prediction in sepsis patients: evidence from the MIMIC-IV database.

BMC medical informatics and decision making
BACKGROUND: Sepsis, a severe systemic response to infection, frequently results in adverse outcomes, underscoring the urgency for prompt and accurate prognostic tools. Machine learning methods such as logistic regression, random forests, and CatBoost...

Constructing an early warning model for elderly sepsis patients based on machine learning.

Scientific reports
Sepsis is a serious threat to human life. Early prediction of high-risk populations for sepsis is necessary especially in elderly patients. Artificial intelligence shows benefits in early warning. The aim of the study was to construct an early machin...

Predicting mortality and risk factors of sepsis related ARDS using machine learning models.

Scientific reports
Sepsis related acute respiratory distress syndrome (ARDS) is a common and serious disease in clinic. Accurate prediction of in-hospital mortality of patients is crucial to optimize treatment and improve prognosis under the new global definition of AR...

Reinforcement learning using neural networks in estimating an optimal dynamic treatment regime in patients with sepsis.

Computer methods and programs in biomedicine
OBJECTIVE: Early fluid resuscitation is crucial in the treatment of sepsis, yet the optimal dosage remains debated. This study aims to determine the optimal multi-stage fluid resuscitation dosage for sepsis patients.

Clinical subtypes identification and feature recognition of sepsis leukocyte trajectories based on machine learning.

Scientific reports
Sepsis is a highly variable condition, and tracking leukocyte patterns may offer insights for tailored treatment and prognosis. We used the MIMIC-IV database to analyze patients diagnosed with Sepsis-3 within 24 h of ICU admission. Latent class mixed...

Explainable Machine Learning Model for Predicting Persistent Sepsis-Associated Acute Kidney Injury: Development and Validation Study.

Journal of medical Internet research
BACKGROUND: Persistent sepsis-associated acute kidney injury (SA-AKI) shows poor clinical outcomes and remains a therapeutic challenge for clinicians. Early identification and prediction of persistent SA-AKI are crucial.