AIMC Topic: Transcriptome

Clear Filters Showing 351 to 360 of 899 articles

Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.

RNA biology
2´-O-methylation (Nm) is one of the most abundant modifications found in both mRNAs and noncoding RNAs. It contributes to many biological processes, such as the normal functioning of tRNA, the protection of mRNA against degradation by the decapping a...

Prediction of TNFRSF9 expression and molecular pathological features in thyroid cancer using machine learning to construct Pathomics models.

Endocrine
BACKGROUND: The TNFRSF9 molecule is pivotal in thyroid carcinoma (THCA) development. This study utilizes Pathomics techniques to predict TNFRSF9 expression in THCA tissue and explore its molecular mechanisms.

An integrated machine learning framework for developing and validating a diagnostic model of major depressive disorder based on interstitial cystitis-related genes.

Journal of affective disorders
BACKGROUND: Major depressive disorder (MDD) and interstitial cystitis (IC) are two highly debilitating conditions that often coexist with reciprocal effect, significantly exacerbating patients' suffering. However, the molecular underpinnings linking ...

Discovery of biomarkers in the psoriasis through machine learning and dynamic immune infiltration in three types of skin lesions.

Frontiers in immunology
INTRODUCTION: Psoriasis is a chronic skin disease characterized by unique scaling plaques. However, during the acute phase, psoriatic lesions exhibit eczematous changes, making them difficult to distinguish from atopic dermatitis, which poses challen...

A comparison of RNA-Seq data preprocessing pipelines for transcriptomic predictions across independent studies.

BMC bioinformatics
BACKGROUND: RNA sequencing combined with machine learning techniques has provided a modern approach to the molecular classification of cancer. Class predictors, reflecting the disease class, can be constructed for known tissue types using the gene ex...

Novel candidate genes for environmental stresses response in Synechocystis sp. PCC 6803 revealed by machine learning algorithms.

Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]
Cyanobacteria have developed acclimation strategies to adapt to harsh environments, making them a model organism. Understanding the molecular mechanisms of tolerance to abiotic stresses can help elucidate how cells change their gene expression patter...

Opening the Black Box: Spatial Transcriptomics and the Relevance of Artificial Intelligence-Detected Prognostic Regions in High-Grade Serous Carcinoma.

Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc
Image-based deep learning models are used to extract new information from standard hematoxylin and eosin pathology slides; however, biological interpretation of the features detected by artificial intelligence (AI) remains a challenge. High-grade ser...

Harnessing TME depicted by histological images to improve cancer prognosis through a deep learning system.

Cell reports. Medicine
Spatial transcriptomics (ST) provides insights into the tumor microenvironment (TME), which is closely associated with cancer prognosis, but ST has limited clinical availability. In this study, we provide a powerful deep learning system to augment TM...

Enhancing breast cancer outcomes with machine learning-driven glutamine metabolic reprogramming signature.

Frontiers in immunology
BACKGROUND: This study aims to identify precise biomarkers for breast cancer to improve patient outcomes, addressing the limitations of traditional staging in predicting treatment responses.

Analysis of Bladder Cancer Staging Prediction Using Deep Residual Neural Network, Radiomics, and RNA-Seq from High-Definition CT Images.

Genetics research
Bladder cancer has recently seen an alarming increase in global diagnoses, ascending as a predominant cause of cancer-related mortalities. Given this pressing scenario, there is a burgeoning need to identify effective biomarkers for both the diagnosi...