AIMC Topic: Vital Signs

Clear Filters Showing 41 to 50 of 92 articles

EXTraction of EMR numerical data: an efficient and generalizable tool to EXTEND clinical research.

BMC medical informatics and decision making
BACKGROUND: Electronic medical records (EMR) contain numerical data important for clinical outcomes research, such as vital signs and cardiac ejection fractions (EF), which tend to be embedded in narrative clinical notes. In current practice, this da...

Machine Learning Models for Analysis of Vital Signs Dynamics: A Case for Sepsis Onset Prediction.

Journal of healthcare engineering
OBJECTIVE: Achieving accurate prediction of sepsis detection moment based on bedside monitor data in the intensive care unit (ICU). A good clinical outcome is more probable when onset is suspected and treated on time, thus early insight of sepsis ons...

Combining patient visual timelines with deep learning to predict mortality.

PloS one
BACKGROUND: Deep learning algorithms have achieved human-equivalent performance in image recognition. However, the majority of clinical data within electronic health records is inherently in a non-image format. Therefore, creating visual representati...

An intelligent warning model for early prediction of cardiac arrest in sepsis patients.

Computer methods and programs in biomedicine
BACKGROUND: Sepsis-associated cardiac arrest is a common issue with the low survival rate. Early prediction of cardiac arrest can provide the time required for intervening and preventing its onset in order to reduce mortality. Several studies have be...

Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs.

Computers in biology and medicine
OBJECTIVE: Sepsis remains a costly and prevalent syndrome in hospitals; however, machine learning systems can increase timely sepsis detection using electronic health records. This study validates a gradient boosted ensemble machine learning tool for...

Estimating Missing Data in Temporal Data Streams Using Multi-Directional Recurrent Neural Networks.

IEEE transactions on bio-medical engineering
Missing data is a ubiquitous problem. It is especially challenging in medical settings because many streams of measurements are collected at different-and often irregular-times. Accurate estimation of the missing measurements is critical for many rea...

Assessment of the Feasibility of automated, real-time clinical decision support in the emergency department using electronic health record data.

BMC emergency medicine
BACKGROUND: The use of big data and machine learning within clinical decision support systems (CDSSs) has the potential to transform medicine through better prognosis, diagnosis and automation of tasks. Real-time application of machine learning algor...