AIMC Journal:
European journal of radiology

Showing 281 to 290 of 296 articles

Prediction of molecular subtypes of breast cancer using BI-RADS features based on a "white box" machine learning approach in a multi-modal imaging setting.

European journal of radiology
PURPOSE: To develop and validate an interpretable and repeatable machine learning model approach to predict molecular subtypes of breast cancer from clinical metainformation together with mammography and MRI images.

Multi-parametric MRI-based radiomics signature for discriminating between clinically significant and insignificant prostate cancer: Cross-validation of a machine learning method.

European journal of radiology
PURPOSE: To evaluate the performance of a multi-parametric MRI (mp-MRI)-based radiomics signature for discriminating between clinically significant prostate cancer (csPCa) and insignificant PCa (ciPCa).

The present and future of deep learning in radiology.

European journal of radiology
The advent of Deep Learning (DL) is poised to dramatically change the delivery of healthcare in the near future. Not only has DL profoundly affected the healthcare industry it has also influenced global businesses. Within a span of very few years, ad...

Qualitative versus quantitative lumbar spinal stenosis grading by machine learning supported texture analysis-Experience from the LSOS study cohort.

European journal of radiology
PURPOSE: To investigate and compare the reproducibility and accuracy of qualitative ratings and quantitative texture analysis (TA) in detection and grading of lumbar spinal stenosis (LSS) in magnetic resonance imaging (MR) scans of the lumbar spine.

Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.

European journal of radiology
PURPOSE: To evaluate the performance of a machine learning method based on texture features in multi-parametric magnetic resonance imaging (MRI) to differentiate a glioblastoma multiforme (GBM) from a primary cerebral nervous system lymphoma (PCNSL).

On differentiation between vasogenic edema and non-enhancing tumor in high-grade glioma patients using a support vector machine classifier based upon pre and post-surgery MRI images.

European journal of radiology
PURPOSE: High grade gliomas (HGGs) are infiltrative in nature. Differentiation between vasogenic edema and non-contrast enhancing tumor is difficult as both appear hyperintense in T-W/FLAIR images. Most studies involving differentiation between vasog...

The past, present and future role of artificial intelligence in imaging.

European journal of radiology
Artificial intelligence (AI) is already widely employed in various medical roles, and ongoing technological advances are encouraging more widespread use of AI in imaging. This is partly driven by the recognition of the significant frequency and clini...