AIMC Journal:
Scientific reports

Showing 371 to 380 of 5092 articles

Exploring hypoxia driven subtypes of pulmonary arterial hypertension through transcriptomics single cell sequencing and machine learning.

Scientific reports
Pulmonary arterial hypertension (PAH) is a progressive cardiovascular disease characterized by elevated pulmonary arterial pressure, leading to right heart failure and death. Despite advancements in diagnosis and treatment, it remains incurable, and ...

Leveraging TME features and multi-omics data with an advanced deep learning framework for improved Cancer survival prediction.

Scientific reports
Glioma, a malignant intracranial tumor with high invasiveness and heterogeneity, significantly impacts patient survival. This study integrates multi-omics data to improve prognostic prediction and identify therapeutic targets. Using single-cell data ...

Predicting outcomes following open abdominal aortic aneurysm repair using machine learning.

Scientific reports
Patients undergoing open surgical repair of abdominal aortic aneurysm (AAA) have a high risk of post-operative complications. However, there are no widely used tools to predict surgical risk in this population. We used machine learning (ML) technique...

Optimized machine learning mechanism for big data healthcare system to predict disease risk factor.

Scientific reports
Heart disease is becoming more and more common in modern society because of factors like stress, inadequate diets, etc. Early identification of heart disease risk factors is essential as it allows for treatment plans that may reduce the risk of sever...

Variational mode directed deep learning framework for breast lesion classification using ultrasound imaging.

Scientific reports
Breast cancer is the most prevalent cancer and the second cause of cancer related death among women in the United States. Accurate and early detection of breast cancer can reduce the number of mortalities. Recent works explore deep learning technique...

Identification of pivotal genes and regulatory networks associated with SAH based on multi-omics analysis and machine learning.

Scientific reports
Subarachnoid hemorrhage (SAH) is a disease with high mortality and morbidity, and its pathophysiology is complex but poorly understood. To investigate the potential therapeutic targets post-SAH, the SAH-related feature genes were screened by the comb...

Identification and verification of mitochondria-related genes biomarkers associated with immune infiltration for COPD using WGCNA and machine learning algorithms.

Scientific reports
Mitochondrial dysfunction plays a pivotal role in the pathogenesis of chronic obstructive pulmonary disease (COPD). This study combines bioinformatics analysis with machine learning to elucidate potential key mitochondrial-related genes associated wi...

SS-EMERGE - self-supervised enhancement for multidimension emotion recognition using GNNs for EEG.

Scientific reports
Self-supervised learning (SSL) is a potent method for leveraging unlabelled data. Nonetheless, EEG signals, characterised by their low signal-to-noise ratio and high-frequency attributes, often do not surpass fully-supervised techniques in cross-subj...

Ambulance route optimization in a mobile ambulance dispatch system using deep neural network (DNN).

Scientific reports
The ambulance dispatch system plays a crucial role in emergency medical care by ensuring efficient communication, reducing response times, and ultimately saving lives. Delays in ambulance arrival can have serious consequences for patient health and s...

Integrating bioinformatics and machine learning to discover sumoylation associated signatures in sepsis.

Scientific reports
Small Ubiquitin-like MOdifier-mediated modification (SUMOylation) is associated with sepsis; however, its molecular mechanism remains unclear. Herein, hub genes and regulatory mechanisms in sepsis was investigated. The GSE65682 and GSE95233 datasets ...