PURPOSE: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities t...
BACKGROUND: Ttyrosine kinase inhibitors (TKIs) represent the standard first-line treatment for patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma. However, not all patients with EGFR mutations respond to TKIs. This study...
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).
RATIONALE AND OBJECTIVES: The research aims to examine how CT-derived habitat radiomics can be used to predict lymphovascular invasion (LVI) in patients with T1-stage lung adenocarcinoma (LUAD), and compare its effectiveness to traditional radiomics ...
OBJECTIVE: Lung adenocarcinoma (LUAD) continues to be a primary cause of cancer-related mortality globally, highlighting the urgent need for novel insights finto its molecular mechanisms. This study aims to investigate the relationship between gene e...
Drug response prediction (DRP) is a central task in the era of precision medicine. Over the past decade, the emergence of deep learning (DL) has greatly contributed to addressing DRP challenges. Notably, the prediction of DRP for cancer cell lines be...
Lung adenocarcinoma (LUAD) constitutes a major cause of cancer-related fatalities worldwide. Early identification of malignant pulmonary nodules constitutes the most effective approach to reducing the mortality of LUAD. Despite the wide application o...
BACKGROUND: Lung adenocarcinoma (LUAD) is marked by its considerable aggressiveness and pronounced heterogeneity. Programmed cell death (PCD) plays a pivotal role in the progression of tumors, their aggressive behavior, resistance to treatment, and r...
Cancer biomarkers : section A of Disease markers
Apr 2, 2025
ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients...
BACKGROUND: Invasive lung adenocarcinoma (LUAD) with the high-grade patterns (HGPs) has the potential for rapid metastasis and frequent recurrence. Therefore, accurately predicting the presence of high-grade components is crucial for doctors to devel...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.