AIMC Topic: Adenocarcinoma of Lung

Clear Filters Showing 11 to 20 of 191 articles

Predicting Gene Comutation of EGFR and TP53 by Radiomics and Deep Learning in Patients With Lung Adenocarcinomas.

Journal of thoracic imaging
PURPOSE: This study was designed to construct progressive binary classification models based on radiomics and deep learning to predict the presence of epidermal growth factor receptor ( EGFR ) and TP53 mutations and to assess the models' capacities t...

Deep learning radiopathomics predicts targeted therapy sensitivity in EGFR-mutant lung adenocarcinoma.

Journal of translational medicine
BACKGROUND: Ttyrosine kinase inhibitors (TKIs) represent the standard first-line treatment for patients with epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma. However, not all patients with EGFR mutations respond to TKIs. This study...

F-FDG PET/CT-based deep learning models and a clinical-metabolic nomogram for predicting high-grade patterns in lung adenocarcinoma.

BMC medical imaging
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).

Habitat Radiomics and Deep Learning Features Based on CT for Predicting Lymphovascular Invasion in T1-stage Lung Adenocarcinoma: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: The research aims to examine how CT-derived habitat radiomics can be used to predict lymphovascular invasion (LVI) in patients with T1-stage lung adenocarcinoma (LUAD), and compare its effectiveness to traditional radiomics ...

The role and machine learning analysis of mitochondrial autophagy-related gene expression in lung adenocarcinoma.

Frontiers in immunology
OBJECTIVE: Lung adenocarcinoma (LUAD) continues to be a primary cause of cancer-related mortality globally, highlighting the urgent need for novel insights finto its molecular mechanisms. This study aims to investigate the relationship between gene e...

MLG2Net: Molecular Global Graph Network for Drug Response Prediction in Lung Cancer Cell Lines.

Journal of medical systems
Drug response prediction (DRP) is a central task in the era of precision medicine. Over the past decade, the emergence of deep learning (DL) has greatly contributed to addressing DRP challenges. Notably, the prediction of DRP for cancer cell lines be...

A Novel Theranostic Strategy for Malignant Pulmonary Nodules by Targeted CECAM6 with Zr/I-Labeled Tinurilimab.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Lung adenocarcinoma (LUAD) constitutes a major cause of cancer-related fatalities worldwide. Early identification of malignant pulmonary nodules constitutes the most effective approach to reducing the mortality of LUAD. Despite the wide application o...

Analysis of Multiple Programmed Cell Death Patterns and Functional Validations of Apoptosis-Associated Genes in Lung Adenocarcinoma.

Annals of surgical oncology
BACKGROUND: Lung adenocarcinoma (LUAD) is marked by its considerable aggressiveness and pronounced heterogeneity. Programmed cell death (PCD) plays a pivotal role in the progression of tumors, their aggressive behavior, resistance to treatment, and r...

Development and validation of machine learning models for early diagnosis and prognosis of lung adenocarcinoma using miRNA expression profiles.

Cancer biomarkers : section A of Disease markers
ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients...

A CNN-transformer fusion network for predicting high-grade patterns in stage IA invasive lung adenocarcinoma.

Medical physics
BACKGROUND: Invasive lung adenocarcinoma (LUAD) with the high-grade patterns (HGPs) has the potential for rapid metastasis and frequent recurrence. Therefore, accurately predicting the presence of high-grade components is crucial for doctors to devel...