BACKGROUND: N6-methyladenine (6mA) is an important DNA methylation modification that serves a crucial function in various biological activities. Accurate prediction of 6mA sites is essential for elucidating its biological function and underlying mech...
N-methyladenosine (m6A), the most prevalent internal mRNA modification in higher eukaryotes, plays diverse roles in cellular regulation. By incorporating both sequence- and genome-derived features, Fan et al. designed a novel Transformer-BiGRU framew...
Parkinson disease (PD) is a chronic neurological disorder primarily characterized by a deficiency of dopamine in the brain. In recent years, numerous studies have highlighted the substantial influence of RNA N6-methyladenosine (m6A) regulators on var...
N6-methyladenosine (m6A) is one of the most abundant and well-known modifications in messenger RNAs since its discovery in the 1970s. Recent studies have demonstrated that m6A is involved in various biological processes, such as alternative splicing ...
Myelodysplastic syndrome (MDS) frequently transforms into acute myeloid leukemia (AML). Predicting the risk of its transformation will help to make the treatment plan. Levels of expression of N6-methyladenosine (m6A) regulators is difference in patie...
We present m6ACali, a novel machine-learning framework aimed at enhancing the accuracy of N6-methyladenosine (m6A) epitranscriptome profiling by reducing the impact of non-specific antibody enrichment in MeRIP-Seq. The calibration model serves as a g...
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic mRNAs and influences many aspects of RNA processing. miCLIP (m6A individual-nucleotide resolution UV crosslinking and immunoprecipitation) is an antibody-based appr...
DNA N6-methyladenine (6mA) represents important epigenetic modifications, which are responsible for various cellular processes. The accurate identification of 6mA sites is one of the challenging tasks in genome analysis, which leads to an understandi...
N6-methyladenosine (m6A) is the most pervasive modification in eukaryotic mRNAs. Numerous biological processes are regulated by this critical post-transcriptional mark, such as gene expression, RNA stability, RNA structure and translation. Recently, ...
N 6-Methyladenosine (m6A) is the most prevalent RNA modification on mRNAs and lncRNAs. It plays a pivotal role during various biological processes and disease pathogenesis. We present here a comprehensive knowledgebase, m6A-Atlas, for unraveling the ...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.