AIMC Topic: Adult

Clear Filters Showing 1811 to 1820 of 14447 articles

Diagnostic value of deep learning of multimodal imaging of thyroid for TI-RADS category 3-5 classification.

Endocrine
BACKGROUND: Thyroid nodules classified within the Thyroid Imaging Reporting and Data Systems (TI-RADS) category 3-5 are typically regarded as having varying degrees of malignancy risk, with the risk increasing from TI-RADS 3 to TI-RADS 5. While some ...

Machine learning to detect Alzheimer's disease with data on drugs and diagnoses.

The journal of prevention of Alzheimer's disease
BACKGROUND: Integrating machine learning with medical records offers potential for early detection of Alzheimer's disease (AD), enabling timely interventions.

Validity of recurrent neural networks to predict pedal forces and lower limb kinetics in cycling.

Journal of biomechanics
Dynamic variables contribute to understand the mechanics of pedalling and can assist with injury prevention. Measuring pedal forces and joint moments and powers has a high cost, which can be mitigated by using trained artificial neural networks (ANN)...

Machine Learning Models Integrating Dietary Indicators Improve the Prediction of Progression from Prediabetes to Type 2 Diabetes Mellitus.

Nutrients
: Diet plays an important role in preventing and managing the progression from prediabetes to type 2 diabetes mellitus (T2DM). This study aims to develop prediction models incorporating specific dietary indicators and explore the performance in T2DM ...

Power-free knee rehabilitation robot for home-based isokinetic training.

Nature communications
Robot-assisted isokinetic training has been widely adopted for knee rehabilitation. However, existing rehabilitation facilities are often heavy, bulky, and extremely energy-consuming, which limits the rehabilitation opportunities only at designated h...

The value of radiomics and deep learning based on PET/CT in predicting perineural nerve invasion in rectal cancer.

Abdominal radiology (New York)
OBJECTIVE: The objective of this study is to investigate the value of radiomics features and deep learning features based on positron emission tomography/computed tomography (PET/CT) in predicting perineural invasion (PNI) in rectal cancer.

Quantitative analysis of ureteral jets with dynamic magnetic resonance imaging and a deep-learning approach.

Magnetic resonance imaging
OBJECTIVE: To develop dynamic MRU protocol that focuses on the bladder to capture ureteral jets and to automatically estimate frequency and duration of ureteral jets from the dynamic images.