BACKGROUND: The burden of atrial fibrillation (AF) in the intensive care unit (ICU) remains heavy. Glycaemic control is important in the AF management. Glycaemic variability (GV), an emerging marker of glycaemic control, is associated with unfavourab...
Journal of neuroengineering and rehabilitation
Nov 26, 2024
BACKGROUND: We evaluated the feasibility, safety, and efficacy of a 2D-planar robot for minimally supervised home-based upper-limb therapy for post-stroke hemiparesis.
BACKGROUND: The intake of dietary antioxidants and glycolipid metabolism are closely related to chronic kidney disease (CKD), particularly among individuals with abdominal obesity. Nevertheless, the cumulative effect of multiple comorbid risk factors...
BACKGROUND: A deep learning (DL) model that can automatically detect and classify cervical canal and neural foraminal stenosis using cervical spine magnetic resonance imaging (MRI) can improve diagnostic accuracy and efficiency.
To develop and validate a machine learning (ML) model which combined computed tomography (CT) semantic and radiomics features to preoperatively predict Ki-67 expression in gastrointestinal stromal tumors (GISTs) patients. We retrospectively collected...
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, leads to progressive dementia, which impairs decision-making, problem-solving, and communication. While there is no cure, early detection can facilitate treatments to slow its progress...
Mobile collaborative intelligent nursing robots have gained significant attention in the healthcare sector as an innovative solution to address the challenges posed by the increasing aging population and limited medical resources. This article provid...
Journal of computer assisted tomography
Nov 25, 2024
OBJECTIVE: This study aimed to investigate the value of radiomics analysis in the precise diagnosis of triple-negative breast cancer (TNBC) based on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and apparent diffusion coeffici...
RATIONALE AND OBJECTIVES: Missed nodules in chest radiographs (CXRs) are common occurrences. We assessed the effect of artificial intelligence (AI) as a second reader on the accuracy of radiologists and non-radiology physicians in lung nodule detecti...
PURPOSE: Deep learning (DL) methods for detecting large vessel occlusion (LVO) in acute ischemic stroke (AIS) show promise, but the effect of computed tomography angiography (CTA) image quality on DL performance is unclear. Our study investigates the...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.