AIMC Topic: Aged

Clear Filters Showing 4191 to 4200 of 13246 articles

Development and validation of radiology-clinical statistical and machine learning model for stroke-associated pneumonia after first intracerebral haemorrhage.

BMC pulmonary medicine
BACKGROUND: Society is burdened with stroke-associated pneumonia (SAP) after intracerebral haemorrhage (ICH). Cerebral small vessel disease (CSVD) complicates clinical manifestations of stroke. In this study, we redefined the CSVD burden score and in...

Predicting hospital admissions for upper respiratory tract complaints: An artificial neural network approach integrating air pollution and meteorological factors.

Environmental monitoring and assessment
This study uses artificial neural networks (ANNs) to examine the intricate relationship between air pollutants, meteorological factors, and respiratory disorders. The study investigates the correlation between hospital admissions for respiratory dise...

Interpretable machine learning model based on clinical factors for predicting muscle radiodensity loss after treatment in ovarian cancer.

Supportive care in cancer : official journal of the Multinational Association of Supportive Care in Cancer
PURPOSE: Muscle radiodensity loss after surgery and adjuvant chemotherapy is associated with poor outcomes in ovarian cancer. Assessing muscle radiodensity is a real-world clinical challenge owing to the requirement for computed tomography (CT) with ...

Machine learning-based derivation and validation of three immune phenotypes for risk stratification and prognosis in community-acquired pneumonia: a retrospective cohort study.

Frontiers in immunology
BACKGROUND: The clinical presentation of Community-acquired pneumonia (CAP) in hospitalized patients exhibits heterogeneity. Inflammation and immune responses play significant roles in CAP development. However, research on immunophenotypes in CAP pat...

A Comparison of Systematic, Targeted, and Combined Biopsy Using Machine Learning for Prediction of Prostate Cancer Risk: A Multi-Center Study.

Medical principles and practice : international journal of the Kuwait University, Health Science Centre
OBJECTIVES: The aims of the study were to construct a new prognostic prediction model for detecting prostate cancer (PCa) patients using machine-learning (ML) techniques and to compare those models across systematic and target biopsy detection techni...

Deep Learning Reconstruction of Prospectively Accelerated MRI of the Pancreas: Clinical Evaluation of Shortened Breath-Hold Examinations With Dixon Fat Suppression.

Investigative radiology
OBJECTIVE: Deep learning (DL)-enabled magnetic resonance imaging (MRI) reconstructions can enable shortening of breath-hold examinations and improve image quality by reducing motion artifacts. Prospective studies with DL reconstructions of accelerate...

Noninvasive and fast method of calculation for instantaneous wave-free ratio based on haemodynamics and deep learning.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVES: Instantaneous wave-free ratio (iFR) is a new invasive indicator of myocardial ischaemia, and its diagnostic performance is as good as the "gold standard" of myocardial ischaemia diagnosis: fractional flow reserve (FFR). iFR...

Using ensemble learning and hierarchical strategy to predict the outcomes of ESWL for upper ureteral stone treatment.

Computers in biology and medicine
Urinary tract stones are a common and frequently recurring medical issue. Accurately predicting the success rate after surgery can help avoid ineffective medical procedures and reduce unnecessary healthcare costs. This study collected data from patie...

Development of a deep learning-based fully automated segmentation of rotator cuff muscles from clinical MR scans.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: The fatty infiltration and atrophy in the muscle after a rotator cuff (RC) tear are important in surgical decision-making and are linked to poor clinical outcomes after rotator cuff repair. An accurate and reliable quantitative method sho...