AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Case-Control Studies

Showing 11 to 20 of 826 articles

Clear Filters

Peripheral Blood Mononuclear Cell Biomarkers for Major Depressive Disorder: A Transcriptomic Approach.

Depression and anxiety
Major depressive disorder (MDD) is a complex condition characterized by persistent depressed mood, loss of interest or pleasure, loss of energy or fatigue, and, in severe case, recurrent thoughts of death. Despite its prevalence, reliable diagnostic...

Machine Learning-Based Diagnosis of Chronic Subjective Tinnitus With Altered Cognitive Function: An Event-Related Potential Study.

Ear and hearing
OBJECTIVES: Due to the absence of objective diagnostic criteria, tinnitus diagnosis primarily relies on subjective assessments. However, its neuropathological features can be objectively quantified using electroencephalography (EEG). Despite the exis...

Machine learning technique-based four-autoantibody test for early detection of esophageal squamous cell carcinoma: a multicenter, retrospective study with a nested case-control study.

BMC medicine
BACKGROUND: Autoantibodies represent promising diagnostic blood-based biomarkers that may be generated prior to the first clinically detectable signs of cancers. In present study, we aimed to identify a novel optimized autoantibody panel with high di...

The clinical significance of an AI-based assumption model for neurocognitive diseases using a novel dual-task system.

Scientific reports
Dual-task composed of gait or stepping tasks combined with cognitive tasks has been well-established as valuable tools for detecting neurocognitive disorders such as mild cognitive impairment and early-stage Alzheimer's disease. We previously develop...

Classification of schizophrenia spectrum disorder using machine learning and functional connectivity: reconsidering the clinical application.

BMC psychiatry
BACKGROUND: Early identification of Schizophrenia Spectrum Disorder (SSD) is crucial for effective intervention and prognosis improvement. Previous neuroimaging-based classifications have primarily focused on chronic, medicated SSD cohorts. However, ...

Exploring the potential of cell-free RNA and Pyramid Scene Parsing Network for early preeclampsia screening.

BMC pregnancy and childbirth
BACKGROUND: Circulating cell-free RNA (cfRNA) is gaining recognition as an effective biomarker for the early detection of preeclampsia (PE). However, the current methods for selecting disease-specific biomarkers are often inefficient and typically on...

Unique and shared transcriptomic signatures underlying localized scleroderma pathogenesis identified using interpretable machine learning.

JCI insight
Using transcriptomic profiling at single-cell resolution, we investigated cell-intrinsic and cell-extrinsic signatures associated with pathogenesis and inflammation-driven fibrosis in both adult and pediatric patients with localized scleroderma (LS)....

Identification of patients at risk for pancreatic cancer in a 3-year timeframe based on machine learning algorithms.

Scientific reports
Early detection of pancreatic cancer (PC) remains challenging largely due to the low population incidence and few known risk factors. However, screening in at-risk populations and detection of early cancer has the potential to significantly alter sur...

Deep learning assisted retinal microvasculature assessment and cerebral small vessel disease in Fabry disease.

Orphanet journal of rare diseases
PURPOSE: The aim of this study was to assess retinal microvascular parameters (RMPs) in Fabry disease (FD) using deep learning, and analyze the correlation with brain lesions related to cerebral small vessel disease (CSVD).

Comparison of Machine Learning Models for Classification of Breast Cancer Risk Based on Clinical Data.

Cancer reports (Hoboken, N.J.)
BACKGROUND: Breast cancer (BC) is a major global health concern with rising incidence and mortality rates in many developing countries. Effective BC risk assessment models are crucial for prevention and early detection. While the Gail model, a tradit...