AIMC Topic: Case-Control Studies

Clear Filters Showing 531 to 540 of 872 articles

Modelling disease risk for amyloid A (AA) amyloidosis in non-human primates using machine learning.

Amyloid : the international journal of experimental and clinical investigation : the official journal of the International Society of Amyloidosis
Amyloid A (AA) amyloidosis is found in humans and non-human primates, but quantifying disease risk prior to clinical symptoms is challenging. We applied machine learning to identify the best predictors of amyloidosis in rhesus macaques from availabl...

An intelligent warning model for early prediction of cardiac arrest in sepsis patients.

Computer methods and programs in biomedicine
BACKGROUND: Sepsis-associated cardiac arrest is a common issue with the low survival rate. Early prediction of cardiac arrest can provide the time required for intervening and preventing its onset in order to reduce mortality. Several studies have be...

Machine-learning based brain age estimation in major depression showing no evidence of accelerated aging.

Psychiatry research. Neuroimaging
Molecular biological findings indicate that affective disorders are associated with processes akin to accelerated aging of the brain. The use of the BrainAGE (brain age estimation gap) framework allows machine-learning based detection of a gap betwee...

Development of machine learning algorithms for prediction of prolonged opioid prescription after surgery for lumbar disc herniation.

The spine journal : official journal of the North American Spine Society
BACKGROUND CONTEXT: Spine surgery has been identified as a risk factor for prolonged postoperative opioid use. Preoperative prediction of opioid use could improve risk stratification, shared decision-making, and patient counseling before surgery.

Salivary microRNAs identified by small RNA sequencing and machine learning as potential biomarkers of alcohol dependence.

Epigenomics
Salivary miRNA can be easily accessible biomarkers of alcohol dependence (AD). The miRNA transcriptome in the saliva of 56 African-Americans (AAs; 28 AD patients/28 controls) and 64 European-Americans (EAs; 32 AD patients/32 controls) was profiled ...

Identifying psychosis spectrum disorder from experience sampling data using machine learning approaches.

Schizophrenia research
The ubiquity of smartphones opened up the possibility of widespread use of the Experience Sampling Method (ESM). The method is used to collect longitudinal data of participants' daily life experiences and is ideal to capture fluctuations in emotions ...

Classifying intracranial stenosis disease severity from functional MRI data using machine learning.

Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Translation of many non-invasive hemodynamic MRI methods to cerebrovascular disease patients has been hampered by well-known artifacts associated with delayed blood arrival times and reduced microvascular compliance. Using machine learning and suppor...

Deep Learning/Artificial Intelligence and Blood-Based DNA Epigenomic Prediction of Cerebral Palsy.

International journal of molecular sciences
The etiology of cerebral palsy (CP) is complex and remains inadequately understood. Early detection of CP is an important clinical objective as this improves long term outcomes. We performed genome-wide DNA methylation analysis to identify epigenomic...

Evaluate driver response to active warning system in level-2 automated vehicles.

Accident; analysis and prevention
As vehicles with automated functions become more prevalent on U.S. roadways, maintaining driver attention while the vehicle is engaged in automation will be an important consideration for safe operation of these vehicles. The objective of this paper ...