AI Medical Compendium Topic:
Cohort Studies

Clear Filters Showing 651 to 660 of 1126 articles

High-throughput quantitative histology in systemic sclerosis skin disease using computer vision.

Arthritis research & therapy
BACKGROUND: Skin fibrosis is the clinical hallmark of systemic sclerosis (SSc), where collagen deposition and remodeling of the dermis occur over time. The most widely used outcome measure in SSc clinical trials is the modified Rodnan skin score (mRS...

Deep learning algorithm for surveillance of pneumothorax after lung biopsy: a multicenter diagnostic cohort study.

European radiology
OBJECTIVES: Pneumothorax is the most common and potentially life-threatening complication arising from percutaneous lung biopsy. We evaluated the performance of a deep learning algorithm for detection of post-biopsy pneumothorax in chest radiographs ...

Early prediction of circulatory failure in the intensive care unit using machine learning.

Nature medicine
Intensive-care clinicians are presented with large quantities of measurements from multiple monitoring systems. The limited ability of humans to process complex information hinders early recognition of patient deterioration, and high numbers of monit...

Artificial intelligence algorithm to predict the need for critical care in prehospital emergency medical services.

Scandinavian journal of trauma, resuscitation and emergency medicine
BACKGROUND: In emergency medical services (EMSs), accurately predicting the severity of a patient's medical condition is important for the early identification of those who are vulnerable and at high-risk. In this study, we developed and validated an...

Assessing Contribution of Higher Order Clinical Risk Factors to Prediction of Outcome in Aneurysmal Subarachnoid Hemorrhage Patients.

AMIA ... Annual Symposium proceedings. AMIA Symposium
The goal of this study was to investigate the application of machine learning models capable of capturing multiplica tive and temporal clinical risk factors for outcome prediction inpatients with aneurysmal subarachnoid hemorrhage (aSAH). We examined...

Identification of elders at higher risk for fall with statewide electronic health records and a machine learning algorithm.

International journal of medical informatics
OBJECTIVE: Predicting the risk of falls in advance can benefit the quality of care and potentially reduce mortality and morbidity in the older population. The aim of this study was to construct and validate an electronic health record-based fall risk...