AIMC Topic: Databases, Genetic

Clear Filters Showing 111 to 120 of 702 articles

Identification of shared gene signatures and pathways for diagnosing osteoporosis with sarcopenia through integrated bioinformatics analysis and machine learning.

BMC musculoskeletal disorders
BACKGROUND: Prior studies have suggested a potential relationship between osteoporosis and sarcopenia, both of which can present symptoms of compromised mobility. Additionally, fractures among the elderly are often considered a common outcome of both...

Machine learning-based identification and immune characterization of ferroptosis-related molecular clusters in osteoarthritis and validation.

Aging
Osteoarthritis (OA), a degenerative joint disease, involves synovial inflammation, subchondral bone erosion, and cartilage degeneration. Ferroptosis, a regulated non-apoptotic programmed cell death, is associated with various diseases. This study inv...

Exploring T-cell exhaustion features in Acute myocardial infarction for a Novel Diagnostic model and new therapeutic targets by bio-informatics and machine learning.

BMC cardiovascular disorders
BACKGROUND: T-cell exhaustion (TEX), a condition characterized by impaired T-cell function, has been implicated in numerous pathological conditions, but its role in acute myocardial Infarction (AMI) remains largely unexplored. This research aims to i...

Discovery of biomarkers in the psoriasis through machine learning and dynamic immune infiltration in three types of skin lesions.

Frontiers in immunology
INTRODUCTION: Psoriasis is a chronic skin disease characterized by unique scaling plaques. However, during the acute phase, psoriatic lesions exhibit eczematous changes, making them difficult to distinguish from atopic dermatitis, which poses challen...

Phenome-wide identification of therapeutic genetic targets, leveraging knowledge graphs, graph neural networks, and UK Biobank data.

Science advances
The ongoing expansion of human genomic datasets propels therapeutic target identification; however, extracting gene-disease associations from gene annotations remains challenging. Here, we introduce Mantis-ML 2.0, a framework integrating AstraZeneca'...

Application of machine learning approaches for predicting hemophilia A severity.

Journal of thrombosis and haemostasis : JTH
BACKGROUND: Hemophilia A (HA) is an X-linked congenital bleeding disorder, which leads to deficiency of clotting factor (F) VIII. It mostly affects males, and females are considered carriers. However, it is now recognized that variants of F8 in femal...

Weighted Gene Co-expression Network Analysis and Machine Learning Validation for Identifying Major Genes Related to Sjogren's Syndrome.

Biochemical genetics
Sjogren's syndrome (SS) is an autoimmune disorder characterized by dry mouth and dry eyes. Its pathogenic mechanism is currently unclear. This study aims to integrate weighted gene co-expression network analysis (WGCNA) and machine learning to identi...

Identification of Age-Related Characteristic Genes Involved in Severe COVID-19 Infection Among Elderly Patients Using Machine Learning and Immune Cell Infiltration Analysis.

Biochemical genetics
Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms an...