AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Databases, Nucleic Acid

Showing 11 to 20 of 88 articles

Clear Filters

Comparison of machine-learning methodologies for accurate diagnosis of sepsis using microarray gene expression data.

PloS one
We investigate the feasibility of molecular-level sample classification of sepsis using microarray gene expression data merged by in silico meta-analysis. Publicly available data series were extracted from NCBI Gene Expression Omnibus and EMBL-EBI Ar...

Integrated Learning: Screening Optimal Biomarkers for Identifying Preeclampsia in Placental mRNA Samples.

Computational and mathematical methods in medicine
Preeclampsia (PE) is a maternal disease that causes maternal and child death. Treatment and preventive measures are not sound enough. The problem of PE screening has attracted much attention. The purpose of this study is to screen placental mRNA to o...

iPTT(2 L)-CNN: A Two-Layer Predictor for Identifying Promoters and Their Types in Plant Genomes by Convolutional Neural Network.

Computational and mathematical methods in medicine
A promoter is a short DNA sequence near to the start codon, responsible for initiating transcription of a specific gene in genome. The accurate recognition of promoters has great significance for a better understanding of the transcriptional regulati...

Deep6mA: A deep learning framework for exploring similar patterns in DNA N6-methyladenine sites across different species.

PLoS computational biology
N6-methyladenine (6mA) is an important DNA modification form associated with a wide range of biological processes. Identifying accurately 6mA sites on a genomic scale is crucial for under-standing of 6mA's biological functions. However, the existing ...

Novel gene signatures for stage classification of the squamous cell carcinoma of the lung.

Scientific reports
The squamous cell carcinoma of the lung (SCLC) is one of the most common types of lung cancer. As GLOBOCAN reported in 2018, lung cancer was the first cause of death and new cases by cancer worldwide. Typically, diagnosis is made in the later stages ...

scCancer: a package for automated processing of single-cell RNA-seq data in cancer.

Briefings in bioinformatics
Molecular heterogeneities and complex microenvironments bring great challenges for cancer diagnosis and treatment. Recent advances in single-cell RNA-sequencing (scRNA-seq) technology make it possible to study cancer cell heterogeneities and microenv...

coupleCoC+: An information-theoretic co-clustering-based transfer learning framework for the integrative analysis of single-cell genomic data.

PLoS computational biology
Technological advances have enabled us to profile multiple molecular layers at unprecedented single-cell resolution and the available datasets from multiple samples or domains are growing. These datasets, including scRNA-seq data, scATAC-seq data and...

Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance.

Briefings in bioinformatics
Although chemotherapy is the first-line treatment for ovarian cancer (OCa) patients, chemoresistance (CR) decreases their progression-free survival. This paper investigates the genetic interaction (GI) related to OCa-CR. To decrease the complexity of...

FexRNA: Exploratory Data Analysis and Feature Selection of Non-Coding RNA.

IEEE/ACM transactions on computational biology and bioinformatics
Non-coding RNA (ncRNA) is involved in many biological processes and diseases in all species. Many ncRNA datasets exist that provide ncRNA data in FASTA format which is well suited for biomedical purposes. However, for ncRNA analysis and classificatio...