AIMC Topic: Decision Support Techniques

Clear Filters Showing 61 to 70 of 436 articles

A Predictive Model Integrating AI Recognition Technology and Biomarkers for Lung Nodule Assessment.

The Thoracic and cardiovascular surgeon
BACKGROUND:  Lung cancer is the most prevalent and lethal cancer globally, necessitating accurate differentiation between benign and malignant pulmonary nodules to guide treatment decisions. This study aims to develop a predictive model that integrat...

Artificial Intelligence in Diagnosing and Managing Vascular Surgery Patients: An Experimental Study Using the GPT-4 Model.

Annals of vascular surgery
BACKGROUND: The introduction of artificial intelligence (AI) has led to groundbreaking advancements across many scientific fields. Machine learning algorithms have enabled AI models to learn, adapt, and solve complex problems in previously unimaginab...

Predictive Factors Driving Positive Awake Test in Carotid Endarterectomy Using Machine Learning.

Annals of vascular surgery
BACKGROUND: Positive neurologic awake testing during the carotid cross-clamping may be present in around 8% of patients undergoing carotid endarterectomy (CEA). The present work aimed to assess the accuracy of an artificial intelligence (AI)-powered ...

Machine learning for predicting in-hospital mortality in elderly patients with heart failure combined with hypertension: a multicenter retrospective study.

Cardiovascular diabetology
BACKGROUND: Heart failure combined with hypertension is a major contributor for elderly patients (≥ 65 years) to in-hospital mortality. However, there are very few models to predict in-hospital mortality in such elderly patients. We aimed to develop ...

Predicting paediatric asthma exacerbations with machine learning: a systematic review with meta-analysis.

European respiratory review : an official journal of the European Respiratory Society
BACKGROUND: Asthma exacerbations in children pose a significant burden on healthcare systems and families. While traditional risk assessment tools exist, artificial intelligence (AI) offers the potential for enhanced prediction models.

Machine Learning Model for Predicting Risk Factors of Prolonged Length of Hospital Stay in Patients with Aortic Dissection: a Retrospective Clinical Study.

Journal of cardiovascular translational research
The length of hospital stay (LOS) is crucial for assessing medical service quality. This study aimed to develop machine learning models for predicting risk factors of prolonged LOS in patients with aortic dissection (AD). The data of 516 AD patients ...