AIMC Topic: Fatty Liver

Clear Filters Showing 11 to 20 of 94 articles

Machine learning models for predicting metabolic dysfunction-associated steatotic liver disease prevalence using basic demographic and clinical characteristics.

Journal of translational medicine
BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a global health concern that necessitates early screening and timely intervention to improve prognosis. The current diagnostic protocols for MASLD involve complex procedu...

Machine learning for predicting metabolic-associated fatty liver disease including NHHR: a cross-sectional NHANES study.

PloS one
OBJECTIVE: Metabolic - associated fatty liver disease (MAFLD) is a common hepatic disorder with increasing prevalence, and early detection remains inadequately achieved. This study aims to explore the relationship between the non-high-density lipopro...

Trans-ancestral rare variant association study with machine learning-based phenotyping for metabolic dysfunction-associated steatotic liver disease.

Genome biology
BACKGROUND: Genome-wide association studies (GWAS) have identified common variants associated with metabolic dysfunction-associated steatotic liver disease (MASLD). However, rare coding variant studies have been limited by phenotyping challenges and ...

Automated identification of incidental hepatic steatosis on Emergency Department imaging using large language models.

Hepatology communications
BACKGROUND: Hepatic steatosis is a precursor to more severe liver disease, increasing morbidity and mortality risks. In the Emergency Department, routine abdominal imaging often reveals incidental hepatic steatosis that goes undiagnosed due to the ac...

FibrAIm - The machine learning approach to identify the early stage of liver fibrosis and steatosis.

International journal of medical informatics
BACKGROUND: Early recognition of steatosis (fatty liver) and fibrosis in liver health is crucial for effectively managing and preventing the possibility of liver dysfunction. Detecting steatosis helps identify individuals at risk of liver-related dis...

Diagnostic of fatty liver using radiomics and deep learning models on non-contrast abdominal CT.

PloS one
PURPOSE: This study aims to explore the potential of non-contrast abdominal CT radiomics and deep learning models in accurately diagnosing fatty liver.

Assessment of ChatGPT-generated medical Arabic responses for patients with metabolic dysfunction-associated steatotic liver disease.

PloS one
BACKGROUND AND AIM: Artificial intelligence (AI)-powered chatbots, such as Chat Generative Pretrained Transformer (ChatGPT), have shown promising results in healthcare settings. These tools can help patients obtain real-time responses to queries, ens...

Development and validation of machine learning models for MASLD: based on multiple potential screening indicators.

Frontiers in endocrinology
BACKGROUND: Multifaceted factors play a crucial role in the prevention and treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). This study aimed to utilize multifaceted indicators to construct MASLD risk prediction machine l...

Golgi protein 73: charting new territories in diagnosing significant fibrosis in MASLD: a prospective cross-sectional study.

Frontiers in endocrinology
OBJECTIVES: To explore the correlation between serum Golgi protein 73 (GP73) levels and the degree of fibrosis in Metabolic dysfunction associated steatotic liver disease (MASLD); to establish a non-invasive diagnostic algorithm based on serum GP73 a...

HepNet: Deep Neural Network for Classification of Early-Stage Hepatic Steatosis Using Microwave Signals.

IEEE journal of biomedical and health informatics
Hepatic steatosis, a key factor in chronic liver diseases, is difficult to diagnose early. This study introduces a classifier for hepatic steatosis using microwave technology, validated through clinical trials. Our method uses microwave signals and d...