AIMC Topic: Gene Expression Profiling

Clear Filters Showing 91 to 100 of 1294 articles

Integrating WGCNA and SVM-RFE identifies hub molecular biomarkers driving ischemic stroke progression.

Neurological research
BACKGROUND: Stroke is the second most common cause of death worldwide and the leading cause of long-term severe disability with neurological impairment worsening within hours after stroke onset and being especially involved with motor function. So fa...

Bioinformatics Approach to Identifying Molecular Targets of Isoliquiritigenin Affecting Chronic Obstructive Pulmonary Disease: A Machine Learning Pharmacology Study.

International journal of molecular sciences
To identify the molecular targets and possible mechanisms of isoliquiritigenin (ISO) in affecting chronic obstructive pulmonary disease (COPD) by regulating the glycolysis and phagocytosis of alveolar macrophages (AM). Datasets GSE130928 and GSE13896...

Deconvolution of cell types and states in spatial multiomics utilizing TACIT.

Nature communications
Identifying cell types and states remains a time-consuming, error-prone challenge for spatial biology. While deep learning increasingly plays a role, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in...

Transfer learning of multicellular organization via single-cell and spatial transcriptomics.

PLoS computational biology
Biological tissues exhibit complex gene expression and multicellular patterns that are valuable to dissect. Single-cell RNA sequencing (scRNA-seq) provides full coverages of genes, but lacks spatial information, whereas spatial transcriptomics (ST) m...

Identification of gene signatures associated with lactation for predicting prognosis and treatment response in breast cancer patients through machine learning.

Scientific reports
As a newly discovered histone modification, abnormal lactation has been found to be present in and contribute to the development of various cancers. The aim of this study was to investigate the potential role between lactylation and the prognosis of ...

Integrative analysis of signaling and metabolic pathways, immune infiltration patterns, and machine learning-based diagnostic model construction in major depressive disorder.

Scientific reports
Major depressive disorder (MDD) is a multifactorial disorder involving genetic and environmental factors, with unclear pathogenesis. This study aims to explore the pathogenic pathway of MDD and its relationship with immune responses and to discover i...

Transcriptomic analyses of human brains with Alzheimer's disease identified dysregulated epilepsy-causing genes.

Epilepsy & behavior : E&B
BACKGROUND & OBJECTIVE: Alzheimer's Disease (AD) patients at multiple stages of disease progression have a high prevalence of seizures. However, whether AD and epilepsy share pathophysiological changes remains poorly defined. In this study, we levera...

Machine learning-based characterization of stemness features and construction of a stemness subtype classifier for bladder cancer.

BMC cancer
BACKGROUND: Bladder cancer (BLCA) is a highly heterogeneous disease that presents challenges in predicting prognosis and treatment response. Cancer stem cells are key drivers of tumor development, progression, metastasis, and treatment resistance. Th...

Comprehensive molecular analyses of an autoimmune-related gene predictive model and immune infiltrations using machine learning methods in intracranial aneurysma.

Frontiers in immunology
BACKGROUND: Increasing evidence indicates a connection between intracranial aneurysm (intracranial aneurysm, IA) and autoimmune diseases. However, the molecular mechanisms from a genetic perspective remain unclear. This study aims to elucidate the po...