AIMC Topic: Lung Neoplasms

Clear Filters Showing 431 to 440 of 1623 articles

Standalone deep learning versus experts for diagnosis lung cancer on chest computed tomography: a systematic review.

European radiology
PURPOSE: To compare the diagnostic performance of standalone deep learning (DL) algorithms and human experts in lung cancer detection on chest computed tomography (CT) scans.

Pre-operative lung ablation prediction using deep learning.

European radiology
OBJECTIVE: Microwave lung ablation (MWA) is a minimally invasive and inexpensive alternative cancer treatment for patients who are not candidates for surgery/radiotherapy. However, a major challenge for MWA is its relatively high tumor recurrence rat...

Machine learning-based integration develops an immunogenic cell death-derived lncRNA signature for predicting prognosis and immunotherapy response in lung adenocarcinoma.

Scientific reports
Accumulating evidence demonstrates that lncRNAs are involved in the regulation of the immune microenvironment and early tumor development. Immunogenic cell death occurs mainly through the release or increase of tumor-associated antigen and tumor-spec...

A novel machine learning model for efficacy prediction of immunotherapy-chemotherapy in NSCLC based on CT radiomics.

Computers in biology and medicine
Lung cancer is categorized into two main types: non-small cell lung cancer (NSCLC) and small cell lung cancer. Of these, NSCLC accounts for approximately 85% of all cases and encompasses varieties such as squamous cell carcinoma and adenocarcinoma. F...

A machine learning-based approach to predict energy layer for each field in spot-scanning proton arc therapy for lung cancer: A feasibility study.

Medical physics
BACKGROUND: Determining the optimal energy layer (EL) for each field, under considering both dose constraints and delivery efficiency, is crucial to promoting the development of proton arc therapy (PAT) technology.

Enhancing cancer prediction in challenging screen-detected incident lung nodules using time-series deep learning.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Lung cancer screening (LCS) using annual computed tomography (CT) scanning significantly reduces mortality by detecting cancerous lung nodules at an earlier stage. Deep learning algorithms can improve nodule malignancy risk stratification. However, t...

Effect of emphysema on AI software and human reader performance in lung nodule detection from low-dose chest CT.

European radiology experimental
BACKGROUND: Emphysema influences the appearance of lung tissue in computed tomography (CT). We evaluated whether this affects lung nodule detection by artificial intelligence (AI) and human readers (HR).

Prognostic model incorporating immune checkpoint genes to predict the immunotherapy efficacy for lung adenocarcinoma: a cohort study integrating machine learning algorithms.

Immunologic research
This study aimed to develop and validate a nomogram based on immune checkpoint genes (ICGs) for predicting prognosis and immune checkpoint blockade (ICB) efficacy in lung adenocarcinoma (LUAD) patients. A total of 385 LUAD patients from the TCGA data...

Attention pyramid pooling network for artificial diagnosis on pulmonary nodules.

PloS one
The development of automated tools using advanced technologies like deep learning holds great promise for improving the accuracy of lung nodule classification in computed tomography (CT) imaging, ultimately reducing lung cancer mortality rates. Howev...

Development of a machine learning model for predicting pneumothorax risk in coaxial core needle biopsy (≤3 cm).

European journal of radiology
PURPOSE: The aim is to devise a machine learning algorithm exploiting preoperative clinical data to forecast the hazard of pneumothorax post-coaxial needle lung biopsy (CCNB), thereby informing clinical decision-making and enhancing perioperative car...