AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lymphocytes, Tumor-Infiltrating

Showing 1 to 10 of 54 articles

Clear Filters

Annotation-Free Whole-Slide Image Analysis Method to Assess Immune Infiltration in Colorectal Cancer.

JCO precision oncology
PURPOSE: Tumor-infiltrating lymphocytes (TILs) play a crucial role in host antitumor processes. High level of TILs is associated with better outcomes for patients. We aim to automatically quantify TILs without any nuclei annotation and further constr...

Constructing a neural network model based on tumor-infiltrating lymphocytes (TILs) to predict the survival of hepatocellular carcinoma patients.

PeerJ
BACKGROUND: Hepatocellular carcinoma (HCC) is the most common primary liver cancer worldwide, and early pathological diagnosis is crucial for formulating treatment plans. Despite the widespread attention to pathology in the treatment of HCC patients,...

An Ultrasound-based Machine Learning Model for Predicting Tumor-Infiltrating Lymphocytes in Breast Cancer.

Technology in cancer research & treatment
IntroductionTumor-infiltrating lymphocytes (TILs) are key indicators of immune response and prognosis in breast cancer (BC). Accurate prediction of TIL levels is essential for guiding personalized treatment strategies. This study aimed to develop and...

A tumor-infiltrating B lymphocytes -related index based on machine-learning predicts prognosis and immunotherapy response in lung adenocarcinoma.

Frontiers in immunology
INTRODUCTION: Tumor-infiltrating B lymphocytes (TILBs) play a pivotal role in shaping the immune microenvironment of tumors (TIME) and in the progression of lung adenocarcinoma (LUAD). However, there remains a scarcity of research that has thoroughly...

Development of a tertiary lymphoid structure-based prognostic model for breast cancer: integrating single-cell sequencing and machine learning to enhance patient outcomes.

Frontiers in immunology
BACKGROUND: Breast cancer, a highly prevalent global cancer, poses significant challenges, especially in advanced stages. Prognostic models are crucial to enhance patient outcomes. Tertiary lymphoid structures (TLS) within the tumor microenvironment ...

Classifying tumour infiltrating lymphocytes in oral squamous cell carcinoma histopathology using joint learning framework.

Scientific reports
Oral squamous cell carcinoma (OSCC) is the most common form of oral cancer, with increasing global incidence and have poor prognosis. Tumour-infiltrating lymphocytes (TILs) are recognized as a key prognostic indicator and play a vital role in OSCC gr...

Artificial intelligence-based spatial analysis of tertiary lymphoid structures and clinical significance for endometrial cancer.

Cancer immunology, immunotherapy : CII
With the incorporation of immune checkpoint inhibitors into the treatment of endometrial cancer (EC), a deeper understanding of the tumor immune microenvironment is critical. Tertiary lymphoid structures (TLSs) are considered favorable prognostic fac...

Automated deep learning-based assessment of tumour-infiltrating lymphocyte density determines prognosis in colorectal cancer.

Journal of translational medicine
BACKGROUND: The presence of tumour-infiltrating lymphocytes (TILs) is a well-established prognostic biomarker across multiple cancer types, with higher TIL counts being associated with lower recurrence rates and improved patient survival. We aimed to...

A machine learning approach to risk-stratification of gastric cancer based on tumour-infiltrating immune cell profiles.

Annals of medicine
BACKGROUND: Gastric cancer (GC) is a highly heterogeneous disease, and the response of patients to clinical treatment varies substantially. There is no satisfactory strategy for predicting curative effects to date. We aimed to explore a new method fo...