AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lymphoma, Large B-Cell, Diffuse

Showing 21 to 30 of 46 articles

Clear Filters

A deep learning diagnostic platform for diffuse large B-cell lymphoma with high accuracy across multiple hospitals.

Nature communications
Diagnostic histopathology is a gold standard for diagnosing hematopoietic malignancies. Pathologic diagnosis requires labor-intensive reading of a large number of tissue slides with high diagnostic accuracy equal or close to 100 percent to guide trea...

DLBCL-Morph: Morphological features computed using deep learning for an annotated digital DLBCL image set.

Scientific data
Diffuse Large B-Cell Lymphoma (DLBCL) is the most common non-Hodgkin lymphoma. Though histologically DLBCL shows varying morphologies, no morphologic features have been consistently demonstrated to correlate with prognosis. We present a morphologic a...

Artificial intelligence strategy integrating morphologic and architectural biomarkers provides robust diagnostic accuracy for disease progression in chronic lymphocytic leukemia.

The Journal of pathology
Artificial intelligence-based tools designed to assist in the diagnosis of lymphoid neoplasms remain limited. The development of such tools can add value as a diagnostic aid in the evaluation of tissue samples involved by lymphoma. A common diagnosti...

Deep learning-based tumour segmentation and total metabolic tumour volume prediction in the prognosis of diffuse large B-cell lymphoma patients in 3D FDG-PET images.

European radiology
OBJECTIVES: To demonstrate the effectiveness of automatic segmentation of diffuse large B-cell lymphoma (DLBCL) in 3D FDG-PET scans using a deep learning approach and validate its value in prognosis in an external validation cohort.

Systems Drug Discovery for Diffuse Large B Cell Lymphoma Based on Pathogenic Molecular Mechanism via Big Data Mining and Deep Learning Method.

International journal of molecular sciences
Diffuse large B cell lymphoma (DLBCL) is an aggressive heterogeneous disease. The most common subtypes of DLBCL include germinal center b-cell (GCB) type and activated b-cell (ABC) type. To learn more about the pathogenesis of two DLBCL subtypes (i.e...

Multimodal deep learning model on interim [F]FDG PET/CT for predicting primary treatment failure in diffuse large B-cell lymphoma.

European radiology
OBJECTIVES: The prediction of primary treatment failure (PTF) is necessary for patients with diffuse large B-cell lymphoma (DLBCL) since it serves as a prominent means for improving front-line outcomes. Using interim F-fluoro-2-deoxyglucose ([F]FDG) ...

Prediction of lymphoma response to CAR T cells by deep learning-based image analysis.

PloS one
Clinical prognostic scoring systems have limited utility for predicting treatment outcomes in lymphomas. We therefore tested the feasibility of a deep-learning (DL)-based image analysis methodology on pre-treatment diagnostic computed tomography (dCT...

Deep learning-based classifier of diffuse large B-cell lymphoma cell-of-origin with clinical outcome.

Briefings in functional genomics
Diffuse large B-cell lymphoma (DLBCL) is an aggressive form of non-Hodgkin lymphoma with poor response to R-CHOP therapy due to remarkable heterogeneity. Based on gene expression, DLBCL cases were divided into two subtypes, i.e. ABC and GCB, where AB...

Robust deep learning-based PET prognostic imaging biomarker for DLBCL patients: a multicenter study.

European journal of nuclear medicine and molecular imaging
OBJECTIVE: To develop and independently externally validate robust prognostic imaging biomarkers distilled from PET images using deep learning techniques for precise survival prediction in patients with diffuse large B cell lymphoma (DLBCL).