AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Lymphoma

Showing 61 to 70 of 79 articles

Clear Filters

Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.

European journal of radiology
PURPOSE: To evaluate the performance of a machine learning method based on texture features in multi-parametric magnetic resonance imaging (MRI) to differentiate a glioblastoma multiforme (GBM) from a primary cerebral nervous system lymphoma (PCNSL).

Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma.

Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine
PURPOSE: Although advanced MRI techniques are increasingly available, imaging differentiation between glioblastoma and primary central nervous system lymphoma (PCNSL) is sometimes confusing. We aimed to evaluate the performance of image classificatio...

Automatic negation detection in narrative pathology reports.

Artificial intelligence in medicine
OBJECTIVE: To detect negations of medical entities in free-text pathology reports with different approaches, and evaluate their performances.

Application of Machine-learning based on Radiomics Features in Differential Diagnosis of Superficial Lymphadenopathy.

Current medical imaging
OBJECTIVE: The accurate diagnosis of superficial lymphadenopathy is challenging. We aim to explore a non-invasive and accurate machine-learning method for distinguishing benign lymph nodes, lymphoma, and metastatic lymph nodes.

Prediction of sentinel lymph node metastasis in breast cancer by using deep learning radiomics based on ultrasound images.

Medicine
Sentinel lymph node metastasis (SLNM) is a crucial predictor for breast cancer treatment and survival. This study was designed to propose deep learning (DL) models based on grayscale ultrasound, color Doppler flow imaging (CDFI), and elastography ima...

Artificial Intelligence in Lymphoma PET Imaging:: A Scoping Review (Current Trends and Future Directions).

PET clinics
Malignant lymphomas are a family of heterogenous disorders caused by clonal proliferation of lymphocytes. F-FDG-PET has proven to provide essential information for accurate quantification of disease burden, treatment response evaluation, and prognost...

Unenhanced CT texture analysis with machine learning for differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma.

Nagoya journal of medical science
Differentiating between nasopharyngeal cancer and nasopharyngeal malignant lymphoma (ML) remains challenging on cross-sectional images. The aim of this study is to investigate the usefulness of texture features on unenhanced CT for differentiating be...

Differentiation of Intrahepatic Cholangiocarcinoma and Hepatic Lymphoma Based on Radiomics and Machine Learning in Contrast-Enhanced Computer Tomography.

Technology in cancer research & treatment
This study aimed to explore the ability of texture parameters combining with machine learning methods in distinguishing intrahepatic cholangiocarcinoma (ICCA) and hepatic lymphoma (HL). A total of 28 patients with HL and 101 patients with ICCA were...