Journal of imaging informatics in medicine
Apr 26, 2024
The aim of this study was to investigate whether super-resolution deep learning reconstruction (SR-DLR) is superior to conventional deep learning reconstruction (DLR) with respect to interobserver agreement in the evaluation of neuroforaminal stenosi...
To better assess the pathology of neurodegenerative disorders and the efficacy of neuroprotective interventions, it is necessary to develop biomarkers that can accurately capture age-related biological changes in the human brain. Brain serotonin 2A r...
International journal of medical informatics
Apr 26, 2024
OBJECTIVES: Adherent perinephric fat (APF) poses significant challenges to surgical procedures. This study aimed to evaluate the usefulness of machine learning algorithms combined with MRI-based radiomics features for predicting the presence of APF.
RATIONALE AND OBJECTIVES: Extraprostatic extension (EPE) is well established as a significant predictor of prostate cancer aggression and recurrence. Accurate EPE assessment prior to radical prostatectomy can impact surgical approach. We aimed to uti...
PURPOSE: The purpose of our study is to investigate image quality, efficiency, and diagnostic performance of a deep learning-accelerated single-shot breath-hold (DLSB) against BLADE for T-weighted MR imaging (TWI) for gastric cancer (GC).
This paper provides a comprehensive review of deep learning models for ischemic stroke lesion segmentation in medical images. Ischemic stroke is a severe neurological disease and a leading cause of death and disability worldwide. Accurate segmentatio...
Journal of applied clinical medical physics
Apr 25, 2024
PURPOSE: To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-...
The use of various kinds of magnetic resonance imaging (MRI) techniques for examining brain tissue has increased significantly in recent years, and manual investigation of each of the resulting images can be a time-consuming task. This paper presents...
The response variability to repetitive transcranial magnetic stimulation (rTMS) challenges the effective use of this treatment option in patients with schizophrenia. This variability may be deciphered by leveraging predictive information in structura...
OBJECTIVES: To assess a deep learning-based reconstruction algorithm (DLRecon) in zero echo-time (ZTE) MRI of the shoulder at 1.5 Tesla for improved delineation of osseous findings.
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.