AIMC Topic: Magnetic Resonance Imaging

Clear Filters Showing 241 to 250 of 6201 articles

Structural and metabolic topological alterations associated with butylphthalide treatment in mild cognitive impairment: Data from a randomized, double-blind, placebo-controlled trial.

Psychiatry and clinical neurosciences
AIMS: Effective intervention for mild cognitive impairment (MCI) is key for preventing dementia. As a neuroprotective agent, butylphthalide has the potential to treat MCI due to Alzheimer disease (AD). However, the pharmacological mechanism of butylp...

Deep learning-based breast MRI for predicting axillary lymph node metastasis: a systematic review and meta-analysis.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: To perform a systematic review and meta-analysis that assesses the diagnostic performance of deep learning algorithms applied to breast MRI for predicting axillary lymph nodes metastases in patients of breast cancer.

Gd-EOB-DTPA-enhanced MRI radiomics and deep learning models to predict microvascular invasion in hepatocellular carcinoma: a multicenter study.

BMC medical imaging
BACKGROUND: Microvascular invasion (MVI) is an important risk factor for early postoperative recurrence of hepatocellular carcinoma (HCC). Based on gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance ...

Detection of antibodies in suspected autoimmune encephalitis diseases using machine learning.

Scientific reports
In our study, we aim to predict the antibody serostatus of patients with suspected autoimmune encephalitis (AE) using machine learning based on pre-contrast T2-weighted MR images acquired at symptom onset. A confirmation of seropositivity is of great...

Image normalization techniques and their effect on the robustness and predictive power of breast MRI radiomics.

European journal of radiology
BACKGROUND AND PURPOSE: Radiomics analysis has emerged as a promising approach to aid in cancer diagnosis and treatment. However, radiomics research currently lacks standardization, and radiomics features can be highly dependent on acquisition and pr...

Multimodal contrastive learning for enhanced explainability in pediatric brain tumor molecular diagnosis.

Scientific reports
Despite the promising performance of convolutional neural networks (CNNs) in brain tumor diagnosis from magnetic resonance imaging (MRI), their integration into the clinical workflow has been limited. That is mainly due to the fact that the features ...

Multivariate Classification of Adolescent Major Depressive Disorder Using Whole-brain Functional Connectivity.

Academic radiology
RATIONALE AND OBJECTIVES: Adolescent major depressive disorder (MDD) is a serious mental health condition that has been linked to abnormal functional connectivity (FC) patterns within the brain. However, whether FC could be used as a potential biomar...