AI Medical Compendium Topic:
Magnetic Resonance Imaging

Clear Filters Showing 471 to 480 of 5860 articles

Machine Learning Driven by Magnetic Resonance Imaging for the Classification of Alzheimer Disease Progression: Systematic Review and Meta-Analysis.

JMIR aging
BACKGROUND: To diagnose Alzheimer disease (AD), individuals are classified according to the severity of their cognitive impairment. There are currently no specific causes or conditions for this disease.

SMDFnet: Saliency multiscale dense fusion network for MRI and CT image fusion.

Computers in biology and medicine
MRI-CT image fusion technology combines magnetic resonance imaging (MRI) and computed tomography (CT) imaging to provide more comprehensive and accurate image information. This fusion technology can play an important role in medical diagnosis and sur...

Fusion of brain imaging genetic data for alzheimer's disease diagnosis and causal factors identification using multi-stream attention mechanisms and graph convolutional networks.

Neural networks : the official journal of the International Neural Network Society
Correctly diagnosing Alzheimer's disease (AD) and identifying pathogenic brain regions and genes play a vital role in understanding the AD and developing effective prevention and treatment strategies. Recent works combine imaging and genetic data, an...

Combination of deep learning reconstruction and quantification for dynamic contrast-enhanced (DCE) MRI.

Magnetic resonance imaging
Dynamic contrast-enhanced (DCE) MRI is an important imaging tool for evaluating tumor vascularity that can lead to improved characterization of tumor extent and heterogeneity, and for early assessment of treatment response. However, clinical adoption...

Classifying Alzheimer's Disease Using a Finite Basis Physics Neural Network.

Microscopy research and technique
The disease amyloid plaques, neurofibrillary tangles, synaptic dysfunction, and neuronal death gradually accumulate throughout Alzheimer's disease (AD), resulting in cognitive decline and functional disability. The challenges of dataset quality, inte...

Machine Learning Recognizes Stages of Parkinson's Disease Using Magnetic Resonance Imaging.

Sensors (Basel, Switzerland)
Neurodegenerative diseases (NDs), such as Alzheimer's disease (AD) and Parkinson's disease (PD), are debilitating conditions that affect millions worldwide, and the number of cases is expected to rise significantly in the coming years. Because early ...

Enhancing classification of active and non-active lesions in multiple sclerosis: machine learning models and feature selection techniques.

BMC medical imaging
INTRODUCTION: Gadolinium-based T1-weighted MRI sequence is the gold standard for the detection of active multiple sclerosis (MS) lesions. The performance of machine learning (ML) and deep learning (DL) models in the classification of active and non-a...

Personalized deep learning auto-segmentation models for adaptive fractionated magnetic resonance-guided radiation therapy of the abdomen.

Medical physics
BACKGROUND: Manual contour corrections during fractionated magnetic resonance (MR)-guided radiotherapy (MRgRT) are time-consuming. Conventional population models for deep learning auto-segmentation might be suboptimal for MRgRT at MR-Linacs since the...