AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Male

Showing 361 to 370 of 21989 articles

Clear Filters

SMANet: A Model Combining SincNet, Multi-Branch Spatial-Temporal CNN, and Attention Mechanism for Motor Imagery BCI.

IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society
Building a brain-computer interface (BCI) based on motor imagery (MI) requires accurately decoding MI tasks, which poses a significant challenge due to individual discrepancy among subjects and low signal-to-noise ratio of EEG signals. We propose an ...

Gadoxetic acid-enhanced MRI for identifying cholangiocyte phenotype hepatocellular carcinoma by interpretable machine learning: individual application of SHAP.

BMC cancer
PURPOSE: Cholangiocyte phenotype hepatocellular carcinoma (HCC) is highly invasive. This study aims to develop and validate an optimal machine learning model to predict cholangiocyte phenotype HCC based on T1 mapping gadoxetic acid-enhanced MRI and t...

Intermittent hypoxemia during hemodialysis: AI-based identification of arterial oxygen saturation saw-tooth pattern.

BMC nephrology
BACKGROUND: Maintenance hemodialysis patients experience high morbidity and mortality, primarily from cardiovascular and infectious diseases. It was discovered recently that low arterial oxygen saturation (SaO) is associated with a pro-inflammatory p...

F-FDG PET/CT-based deep learning models and a clinical-metabolic nomogram for predicting high-grade patterns in lung adenocarcinoma.

BMC medical imaging
BACKGROUND: To develop and validate deep learning (DL) and traditional clinical-metabolic (CM) models based on 18 F-FDG PET/CT images for noninvasively predicting high-grade patterns (HGPs) of invasive lung adenocarcinoma (LUAD).

Artificial intelligence alert system based on intraluminal view for colonoscopy intubation.

Scientific reports
Mucosal contact of the tip of colonoscopy causes red-out views, and more pressure may result in perforation. There is still a lack of quantitative analysis methods for red-out views. We aimed to develop an artificial intelligence (AI)-based system to...

Suicide risk prediction for Korean adolescents based on machine learning.

Scientific reports
Traditional clinical risk assessment tools proved inadequate for reliably identifying individuals at high risk for suicidal behavior. As a result, machine learning (ML) techniques have become progressively incorporated into psychiatric care. This stu...

AI in Home Care-Evaluation of Large Language Models for Future Training of Informal Caregivers: Observational Comparative Case Study.

Journal of medical Internet research
BACKGROUND: The aging population presents an accomplishment for society but also poses significant challenges for governments, health care systems, and caregivers. Elevated rates of functional limitations among older adults, primarily caused by chron...

Explainable Machine Learning Model for Predicting Persistent Sepsis-Associated Acute Kidney Injury: Development and Validation Study.

Journal of medical Internet research
BACKGROUND: Persistent sepsis-associated acute kidney injury (SA-AKI) shows poor clinical outcomes and remains a therapeutic challenge for clinicians. Early identification and prediction of persistent SA-AKI are crucial.

Intraocular lens calculation formula developed using artificial intelligence for ultrasonic biometry.

Arquivos brasileiros de oftalmologia
PURPOSE: We developed an artificial intelligence program for calculating intraocular lenses and analyzed its accuracy rate via ultrasonic biometry. This endeavor is aimed at enhancing precision and efficacy in the selection of intraocular lenses, par...

Predictive modeling of response to repetitive transcranial magnetic stimulation in treatment-resistant depression.

Translational psychiatry
Identifying predictors of treatment response to repetitive transcranial magnetic stimulation (rTMS) remain elusive in treatment-resistant depression (TRD). Leveraging electronic medical records (EMR), this retrospective cohort study applied supervise...