BACKGROUND: Increasing evidence indicates a connection between intracranial aneurysm (intracranial aneurysm, IA) and autoimmune diseases. However, the molecular mechanisms from a genetic perspective remain unclear. This study aims to elucidate the po...
Cancer control : journal of the Moffitt Cancer Center
40334702
IntroductionEarly diagnosis of colorectal cancer (CRC) poses a significant clinical challenge. This study aims to develop machine learning (ML) models for CRC risk prediction using clinical laboratory data.MethodsThis retrospective, single-center stu...
Cancer biomarkers : section A of Disease markers
40171815
ObjectiveStudy aims to develop diagnostic and prognostic models for lung adenocarcinoma (LUAD) using Machine learning(ML)algorithms, aiming to enhance clinical decision-making accuracy.MethodsData from The Cancer Genome Atlas (TCGA) for LUAD patients...
Predicting long non-coding RNA (lncRNA)-protein interactions is essential for understanding biological processes and discovering new therapeutic targets. In this study, we propose a novel model based on inter-view contrastive learning and miRNA fusio...
OBJECTIVE: Hypertension is a major cardiovascular risk factor affecting about 1 in 3 adults. Although the majority of hypertension cases (∼90%) are classified as "primary hypertension" (PHT), endocrine hypertension (EHT) accounts for ∼10% of cases an...
International journal of molecular sciences
40076899
Diagnostic practices for schizophrenia are unreliable due to the lack of a stable biomarker. However, machine learning holds promise in aiding in the diagnosis of schizophrenia and other neurological disorders. Dysregulated miRNAs were extracted from...
Accurate sample classification using transcriptomics data is crucial for advancing personalized medicine. Achieving this goal necessitates determining a suitable sample size that ensures adequate classification accuracy without undue resource allocat...
Small non-coding molecules known as microRNAs (miRNAs) play a critical role in disease diagnosis, treatment, and prognosis evaluation. Traditional wet-lab methods for validating miRNA-disease associations are often time-consuming and inefficient. Wit...
BACKGROUND: Numerous studies have shown that circRNA can act as a miRNA sponge, competitively binding to miRNAs, thereby regulating gene expression and disease progression. Due to the high cost and time-consuming nature of traditional wet lab experim...
Mycotoxins, particularly deoxynivalenol (DON) and zearalenone (ZEN), are common food contaminants that frequently co-occur in grains, posing significant health risks. This study proposed a multiplexed detection platform for simultaneous quantificatio...