AIMC Topic: Multiparametric Magnetic Resonance Imaging

Clear Filters Showing 21 to 30 of 154 articles

Multiparametric MRI-based machine learning system of molecular subgroups and prognosis in medulloblastoma.

European radiology
OBJECTIVES: We aimed to use artificial intelligence to accurately identify molecular subgroups of medulloblastoma (MB), predict clinical outcomes, and incorporate deep learning-based imaging features into the risk stratification.

Deep learning classification of MGMT status of glioblastomas using multiparametric MRI with a novel domain knowledge augmented mask fusion approach.

Scientific reports
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both M...

Detecting B-cell lymphoma-6 overexpression status in primary central nervous system lymphoma using multiparametric MRI-based machine learning.

Neuroradiology
PURPOSE: In primary central nervous system lymphoma (PCNSL), B-cell lymphoma-6 (BCL-6) is an unfavorable prognostic biomarker. We aim to non-invasively detect BCL-6 overexpression in PCNSL patients using multiparametric MRI and machine learning techn...

Noninvasive identification of HER2 status by integrating multiparametric MRI-based radiomics model with the vesical imaging-reporting and data system (VI-RADS) score in bladder urothelial carcinoma.

Abdominal radiology (New York)
PURPOSE: HER2 expression is crucial for the application of HER2-targeted antibody-drug conjugates. This study aims to construct a predictive model by integrating multiparametric magnetic resonance imaging (mpMRI) based multimodal radiomics and the Ve...

Multiparametric MRI for Assessment of the Biological Invasiveness and Prognosis of Pancreatic Ductal Adenocarcinoma in the Era of Artificial Intelligence.

Journal of magnetic resonance imaging : JMRI
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The r...

Multiparametric MRI along with machine learning predicts prognosis and treatment response in pediatric low-grade glioma.

Nature communications
Pediatric low-grade gliomas (pLGGs) exhibit heterogeneous prognoses and variable responses to treatment, leading to tumor progression and adverse outcomes in cases where complete resection is unachievable. Early prediction of treatment responsiveness...

Interpretable machine learning model for predicting clinically significant prostate cancer: integrating intratumoral and peritumoral radiomics with clinical and metabolic features.

BMC medical imaging
BACKGROUND: To develop and validate an interpretable machine learning model based on intratumoral and peritumoral radiomics combined with clinicoradiological features and metabolic information from magnetic resonance spectroscopy (MRS), to predict cl...