AIMC Topic: Neoadjuvant Therapy

Clear Filters Showing 71 to 80 of 222 articles

Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images.

International journal of colorectal disease
PURPOSE: This study aimed to assess tumor regression grade (TRG) in patients with rectal cancer after neoadjuvant chemoradiotherapy (NCRT) through a machine learning-based radiomics analysis using baseline T2-weighted magnetic resonance (MR) images.

Predicting response to neoadjuvant chemotherapy for colorectal liver metastasis using deep learning on prechemotherapy cross-sectional imaging.

Journal of surgical oncology
BACKGROUND AND OBJECTIVES: Deep learning models (DLMs) are applied across domains of health sciences to generate meaningful predictions. DLMs make use of neural networks to generate predictions from discrete data inputs. This study employs DLM on pre...

Assessing Endoscopic Response in Locally Advanced Rectal Cancer Treated with Total Neoadjuvant Therapy: Development and Validation of a Highly Accurate Convolutional Neural Network.

Annals of surgical oncology
BACKGROUND: Rectal tumors display varying degrees of response to total neoadjuvant therapy (TNT). We evaluated the performance of a convolutional neural network (CNN) in interpreting endoscopic images of either a non-complete response to TNT or local...

Machine-learning and mechanistic modeling of metastatic breast cancer after neoadjuvant treatment.

PLoS computational biology
Clinical trials involving systemic neoadjuvant treatments in breast cancer aim to shrink tumors before surgery while simultaneously allowing for controlled evaluation of biomarkers, toxicity, and suppression of distant (occult) metastatic disease. Ye...

Letter to the Editor Regarding Article "Prior to Initiation of Chemotherapy, Can We Predict Breast Tumor Response? Deep Learning Convolutional Neural Networks Approach Using a Breast MRI Tumor Dataset".

Journal of imaging informatics in medicine
The cited article reports on a convolutional neural network trained to predict response to neoadjuvant chemotherapy from pre-treatment breast MRI scans. The proposed algorithm attains impressive performance on the test dataset with a mean Area Under ...

Determining individual suitability for neoadjuvant systemic therapy in breast cancer patients through deep learning.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
BACKGROUND: The survival advantage of neoadjuvant systemic therapy (NST) for breast cancer patients remains controversial, especially when considering the heterogeneous characteristics of individual patients.

Develop and Validate a Nomogram Combining Contrast-Enhanced Spectral Mammography Deep Learning with Clinical-Pathological Features to Predict Neoadjuvant Chemotherapy Response in Patients with ER-Positive/HER2-Negative Breast Cancer.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a nomogram that combines contrast-enhanced spectral mammography (CESM) deep learning with clinical-pathological features to predict neoadjuvant chemotherapy (NAC) response (either low Miller Payne (MP...

Machine Learning-Based Prediction of Pathological Responses and Prognosis After Neoadjuvant Chemotherapy for Non-Small-Cell Lung Cancer: A Retrospective Study.

Clinical lung cancer
BACKGROUND: Neoadjuvant chemotherapy has variable efficacy in patients with non-small-cell lung cancer (NSCLC), yet reliable noninvasive predictive markers are lacking. This study aimed to develop a radiomics model predicting pathological complete re...

Comparing survival of older ovarian cancer patients treated with neoadjuvant chemotherapy versus primary cytoreductive surgery: Reducing bias through machine learning.

Gynecologic oncology
OBJECTIVE: To develop and evaluate a multidimensional comorbidity index (MCI) that identifies ovarian cancer patients at risk of early mortality more accurately than the Charlson Comorbidity Index (CCI) for use in health services research.