AI Medical Compendium Topic:
Predictive Value of Tests

Clear Filters Showing 1031 to 1040 of 2127 articles

Predicting suicide attempt or suicide death following a visit to psychiatric specialty care: A machine learning study using Swedish national registry data.

PLoS medicine
BACKGROUND: Suicide is a major public health concern globally. Accurately predicting suicidal behavior remains challenging. This study aimed to use machine learning approaches to examine the potential of the Swedish national registry data for predict...

Machine learning models to predict length of stay and discharge destination in complex head and neck surgery.

Head & neck
BACKGROUND: This study develops machine learning (ML) algorithms that use preoperative-only features to predict discharge-to-nonhome-facility (DNHF) and length-of-stay (LOS) following complex head and neck surgeries.

Challenges Developing Deep Learning Algorithms in Cytology.

Acta cytologica
BACKGROUND: The incorporation of digital pathology into routine pathology practice is becoming more widespread. Definite advantages exist with respect to the implementation of artificial intelligence (AI) and deep learning in pathology, including cyt...

Prediction of amyloid β PET positivity using machine learning in patients with suspected cerebral amyloid angiopathy markers.

Scientific reports
Amyloid-β(Aβ) PET positivity in patients with suspected cerebral amyloid angiopathy (CAA) MRI markers is predictive of a worse cognitive trajectory, and it provides insights into the underlying vascular pathology (CAA vs. hypertensive angiopathy) to ...

Predicting vaginal birth after previous cesarean: Using machine-learning models and a population-based cohort in Sweden.

Acta obstetricia et gynecologica Scandinavica
INTRODUCTION: Predicting a woman's probability of vaginal birth after cesarean could facilitate the antenatal decision-making process. Having a previous vaginal birth strongly predicts vaginal birth after cesarean. Delivery outcome in women with only...

An index based on deep learning-measured spleen volume on CT for the assessment of high-risk varix in B-viral compensated cirrhosis.

European radiology
OBJECTIVES: Deep learning enables an automated liver and spleen volume measurements on CT. The purpose of this study was to develop an index combining liver and spleen volumes and clinical factors for detecting high-risk varices in B-viral compensate...

Automated analysis and detection of abnormalities in transaxial anatomical cardiovascular magnetic resonance images: a proof of concept study with potential to optimize image acquisition.

The international journal of cardiovascular imaging
The large number of available MRI sequences means patients cannot realistically undergo them all, so the range of sequences to be acquired during a scan are protocolled based on clinical details. Adapting this to unexpected findings identified early ...